Multi-scale modeling of hydrogen diffusion in Ni polycristals

In many applications metallic structural materials face hydrogen-containing environment and at some point the hydrogen enters the metal leading to mechanical properties deterioration and eventually to rupture. The mechanisms of hydrogen embrittlement have been widely studied. Yet, a general, predictive and quantitative model of these phenomena is still missing. This thesis focuses on hydrogen segregation at grain boundaries which is one of the mechanisms identified in hydrogen embrittlement. We aim at modeling the kinetics of the segregation process starting down from the atomic scale. In order to do this, we need to find the equilibrium structures of grain boundaries, identify the segregation sites for each grain boundary and then quantify how each grain boundary affects the diffusion coefficient of hydrogen. All this data will then be fed to a finite element model whose purpose is to compute hydrogen distribution in a polycristalline sample as a function of time, accounting for the specific properties of each grain boundary. These results will be compared with hydrogen permeation experiments which give access to an effective diffusion coefficient, as well as measures localized around a single grain boundary (PANI and SKPFM methods).

Understanding helium trapping mechanisms in new nickel-based alloy grades developed for molten salt reactors

Nickel-based alloys are structural materials of choice for Molten Salt Reactors (MSRs). They offer excellent mechanical properties and good corrosion resistance. In these materials, helium production, mainly caused by the transmutation of nickel by fast neutrons, can reach levels sufficient to strongly embrittle the material or cause it to swell under irradiation. Helium is hardly soluble in the material, and condenses in the form of bubbles or segregates at grain boundaries. To limit these phenomena and successfully trap the helium, one solution is to introduce into the material to be irradiated a high density of nanoprecipitates, whose interfaces will serve as germination sites for nanometric bubbles capable of trapping the helium atoms, preventing the latter from migrating to the grain boundaries and degrading the material's performance. Corrected transmission electron microscopy will be used to study the precipitation kinetics of the thermodynamically expected phases, as well as the atomic structure of the interfaces formed between the precipitates and the matrix. A phase-field simulation of precipitation will also be considered. Finally, the He trapping mechanisms at the interfaces will be studied using electron energy loss spectroscopy (EELS).

Luminescent functional materials developed by additive manufacturing for corrosion monitoring

As part of the energy transition, extending the lifetime of metallic components exposed to corrosive environments is crucial, especially in the nuclear industry, where aggressive conditions lead to rapid degradation. Current maintenance methods, such as non-destructive testing using ultrasounds, are limited in detecting localized corrosion. To address this issue, luminescence-based techniques have been developed for in situ monitoring of material loss. Recent research has demonstrated the integration of luminescent materials into metallic components through additive manufacturing, providing optical properties and the potential to serve as corrosion markers. However, their behavior in corrosive environments and their luminescent characteristics require further exploration.
This thesis project aims to incorporate various luminescent candidates into metallic matrices using laser powder bed fusion (L-PBF) while studying the interplay between microstructure and corrosion. Corrosion will be assessed in NaCl and nitric acid environments to identify corrosive mechanisms and the optimized application. The experiments, accompanied by microstructural observations, will evaluate how long the phosphors remain fixed to the structure before migrating into the medium, an essential piece of information for defining detection devices and maintenance intervals. A test bench will also be established to monitor corrosion in situ.

Structure and mobility of unterstitial clusters and loops in uranium oxide

Uranium oxide (UO2) is the usual fuel used in nuclear fission power plants. As such, its behaviour under irradiation has been extensively studied. Irradiation creates vacancies or interstitial defects that control the evolution of the material's microstructure, which in turn impacts its physical (e.g. thermal conductivity) and mechanical properties. Interstitial clusters in particular play a major role.
On the one hand, at the smallest sizes, the diffusion of interstitials in UO2 is still relatively poorly understood. Experimentally, we observe the appearance of dislocation loops made up of interstitials as large as ten nanometres. Conversely, no cavities are observed and the vacancy defects remain sub-nanometric in size. This indicates that interstitials diffuse more rapidly than vacancies, with diffusion allowing interstitials to agglomerate and form loops. However, atomic-scale calculations show no major difference between the diffusion coefficients of vacancies and interstitials in UO2. One hypothesis to explain this apparent contradiction is that interstitial clusters diffuse rapidly (Garmon, Liu et al. 2023).
On the other hand, the three-dimensional interstitial clusters are expected to be the seeds of the dislocation loops observed by transmission electron microscopy in irradiated uranium oxide. However, the mechanisms by which the aggregates transform into loops and the nature of the loops changes remain poorly understood in uranium oxide. These mechanisms have very recently been elucidated for face-centred cubic metals (Jourdan, Goryaeva et al. 2024). It is possible that comparable mechanisms are at work in UO2 with the complication induced by the existence of two sub-lattices.
We therefore propose to study interstitial clusters in UO2 using atomic-scale simulations.
We will first study the structure of these three-dimensional subnanometric clusters. To do this, we will use artificial intelligence tools for classifying defect structures developed in the laboratory (Goryaeva, Lapointe et al. 2020). We will study the diffusion of these objects using molecular dynamics and automatic searches for migration saddle points using kinetic-ART type tools (Béland, Brommer et al. 2011). Secondly, we will study the relative stability of 3D clusters and loops of faulted and perfect dislocations and the transformations between these different objects.
This study will be based on interatomic interaction potentials. We will start by using empirical potentials available in the literature before turning to Machine Learning-type potentials (Dubois, Tranchida et al. 2024) under development at the CEA Cadarache Fuel Studies Department.

Béland, L. K., et al. (2011). ‘Kinetic activation-relaxation technique.’ Physical Review E 84(4): 046704.

Chartier, A., et al. (2016). ‘Early stages of irradiation induced dislocations in urania.’ Applied Physics Letters 109(18).

Dubois, E. T., et al. (2024). ‘Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials.’ Physical Review Materials 8(2).

Garmon, A., et al. (2023). ‘Diffusion of small anti-Schottky clusters in UO2.’ Journal of Nuclear Materials 585: 154630.

Goryaeva, A. M., et al. (2020). ‘Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores.’ Nature Communications 11(1).

Jourdan, T., et al. (2024). ‘Preferential Nucleation of Dislocation Loops under Stress Explained by A15 Frank-Kasper Nanophases in Aluminum.’ Physical Review Letters 132(22).

Atomistic modeling of fracture in heterogeneous borosilicate glasses

Heterogeneous borosilicate-based glasses contain crystalline or amorphous precipitates forming secondary phases embedded within the glass matrix. These materials are valued for their high thermal shock resistance and excellent chemical durability, making them ideal for various applications such as cookware and laboratory equipment. In particular, within the nuclear industry, many wasteforms effectively function as glass-ceramics due to the presence of elements that form precipitates.

It is well known that secondary phases can significantly affect mechanical properties, particularly fracture toughness. However, the specific mechanisms by which they influence mechanical properties at the atomic scale remain poorly understood. In particular, whether they are crystalline or amorphous and the structure of their interface with the bulk glass are expected to play a crucial role.

The primary aim of this project is to investigate the specific mechanisms by which precipitates influence mechanical properties at the atomic scale.
Additionally, it seeks to understand how these precipitates affect crack propagation.
For this purpose, numerical modelling tools based on molecular dynamics will be employed.
This technique simulates the behaviour of individual atoms over time under different testing conditions.
Thus, it enables probing the local structure of crack tips and how they interact with precipitates at the atomic level, providing valuable insights into the mechanisms underlying crack resistance in heterogeneous glasses.

Study of of the thermodynamic of K2CO3-CO2-H2O for the development of NET and SAF technologies

.Bioenergy with Carbon Capture and Storage (BECCS) uses biomass energy while capturing the carbon dioxide released by the process, resulting in negative emissions into the atmosphere. The reference process in Europe uses potassium carbonate but at atmospheric pressure [1], whereas its sequestration or hydrogenation into sustainable molecules requires high pressures.
The thesis consists in acquiring new thermodynamic and thermo-chemical data at high temperature/pressure [2] required for the energy optimization of such a process, and integrating them into a thermodynamic model.
The overall process will then be reassembled in order to quantify the expected energy gain.
The thesis will be carried out at the Thermodynamic Modeling and Thermochemistry Laboratory (LM2T), in collaboration with LC2R (DRMP/SPC) for the experimental part.

References :
[1]K. Gustafsson, R. Sadegh-Vaziri, S. Grönkvist, F. Levihn et C. Sundberg, «BECCS with combined heat and power: assessing the energy penalty,» Int. J. Greenhouse Gas Control, vol. 110, p. 103434, 2021.
[2] S. Zhang, X. Ye et Y. Lu, «Development of a Potassium Carbonate-based Absorption Process with Crystallization-enabled High-pressure Stripping for CO2 Capture: Vapor–liquid Equilibrium Behavior and CO2 Stripping Performance of Carbonate/Bicarbonate,» Energy Procedia, 2014

Effect of microstructure and irradiation on susceptibility to intergranular cracking of alloy 718 in PWR environment.

Alloy 718, a nickel-based alloy, is used in fuel assemblies for pressurized water reactors (PWRs). In service, these components are subjected to high mechanical stress, neutron irradiation and exposure to the primary environment. Usually, this alloy shows very good resistance to intergranular cracking. However, there are microstructural and/or irradiation conditions which, by modifying the mechanical properties and plasticity mechanisms, make the material susceptible to intergranular cracking in the primary PWR environment.

In this context, the aim of this thesis will be to study the influence of microstructure (via different heat treatments) and irradiation on deformation localization and susceptibility to intergranular cracking in primary PWR media.

To this end, two grades will be tested, one deemed sensitive and the other not. In-situ SEM tensile tests on samples whose microstructure has been previously characterized by EBSD will be carried out to identify the types of intra- and intergranular deformation localization and their evolution. The non-irradiated state will be characterized as the reference state. In addition, exposure and intergranular cracking tests in the primary medium (coupons, slow tension, etc.) will be carried out on both grades and at different irradiation levels. The microstructure as well as surface and intergranular oxidation of the specimens will be characterized by various microscopy techniques (SEM, EBSD, FIB and transmission electron microscopy).

This thesis constitutes for the candidate the opportunity to address a problem of durability of metallic materials in their environment following a multidisciplinary scientific approach combining metallurgy, mechanics and physico-chemistry and based on the use of various cutting-edge techniques available at the CEA. The skills that he will thus acquire can therefore be valued during the rest of his career in the industry (including non-nuclear) or in academic institutions.

Development of a transport chemistry model for spent fuel in deep geological disposal under radiolysis of water

The direct storage of spent fuel (SF) represents a potential alternative to reprocessing as a means of managing nuclear waste. The direct storage of spent fuel in a deep geological environment presents a number of scientific challenges, primarily related to the necessity of developing a comprehensive understanding of the processes involved in the dissolution and release of radionuclides. The objective of this thesis is to develop a comprehensive scientific model that can accurately describe the intricate physico-chemical processes involved, such as the radiolysis of water and the interaction between irradiated fuel and its surrounding environment. The objective is to propose an accurate reactive transport model to enhance long-term predictions of storage performance. This thesis employs a back-and-forth process between modeling and experimentation, with the goal of refining the understanding of alteration mechanisms and validating hypotheses with experimental data. Based on existing models, such as the operational radiolytic model, the work will propose improvements to reduce the current simplifying assumptions. The candidate will contribute to major industrial and societal issues related to nuclear waste management and will help to provide solutions to the associated safety issues.

Study of wire additive manufacturing of a nuclear component with complex geometry

The general aim of the thesis is to study the feasibility of a component for the DEMO fusion reactor using Wire Additive Manufacturing (WAM). To achieve this, the PhD student will first design and manufacture demonstration parts representative of different sub-parts of the component in the laboratory's additive manufacturing cells. He or she will use CAD/CAM software to manufacture parts of increasing size and complexity, while ensuring repeatability.
These parts will be subjected to characterization work, firstly dimensional, to check their geometric conformity with the project specifications; but also microstructural and metallurgical, to guarantee manufacturing quality, in particular the absence of defects within the material (porosity, inclusions...) or metallurgical phases detrimental to its mechanical strength.
Finally, the PhD student will also be required to simulate the manufacture of certain parts using the finite element method, in order to analyze the evolution of parameters of interest, such as temperature, during manufacture, and to estimate the state of deformation and stress after manufacture. These simulations can be used to correct certain discrepancies between expected and actual results, within the framework of a calculation-test dialogue that will see the implementation of instrumentation also serving to validate the models. These simulations will be carried out using the Cast3M finite element code developed at CEA.

Translated with DeepL.com (free version)

Development of very low carbon content martensitic stainless steels reinforced by a nano-oxides dispersion

This thesis aims to optimize the performance of future nuclear steels. Martensitic steels are particularly studied for the components of sodium-cooled fast reactor cores, as they exhibit lower swelling under irradiation compared to austenitic grades. To improve their creep properties, these steels are sometimes reinforced with a fine dispersion of stable nanometric oxides (Oxides Dispersed Strengthened). However, conventional martensitic ODS steels, with chromium content limited to 9-11 %Cr, often suffer from low toughness at room temperature.
Recent research indicates that the toughness of ODS steels could be significantly enhanced with very low carbon content. This thesis proposes an original approach that combines the exceptional toughness and corrosion resistance of Maraging steels with an ODS-type precipitation. Indeed, the Maraging stainless steels are rich in chromium (10-15 %) and nickel (4-9 %), with carbon content below 0.02 % by weight. After austenitization and quenching, these steels exhibit a martensitic structure, providing an outstanding balance between yield strength and toughness.
To evaluate the performance of these disruptive grades, compositions of interest will be selected, developed, and characterized at CEA with collaboration of academic partner teams.

JOB PROFIL: The applicant must be master-2 graduated with training in materials science and ideally metallurgy. The proposed subject is mainly experimental. A basic knowledge of electronic microscopy and/or XRay diffraction is required for this position. At the end of the PhD the applicant will be highly skilled in steel metallurgy and will have operated a large number of microstructural characterizations advanced tools (SEM, TEM, SAXS XRD, DSC). Naturally, he/she can pretend to a metallurgy researcher position in a large range of industries.

Top