Development of multiplexed photon sources for quantum technologies
Quantum information technologies offers several promises in domains such as computation or secured communications. Because of their robustness against decoherence, photonic qubits are particularly interesting for quantum communications applications, even at room temperature. They also offers an alternative to other qubits technologies for quantum computing. For the large-scale deployment of those applications, it is necessary to have cheap, compact and scalable devices. To reach this goal, silicon photonics platform is attractive. It allows implementing key components such as generation, manipulation and detection of photonic qubits. On the silicon platform, the photonic qubits are generated by pair through non linear process. has several benefits, such as working at room temperature, the ability to generate heralded single photon, or undistiguishable photons with spatially distinct sources.
The goal of this thésis is to work on the development, the fabrication monitoring, and the characterization in the laboratory of multiplexed photon sources on silicon chips to overcome the limits in the process of photon generation with one source. In order to achieve a full integration on chip, it is also essential to properly filter unwanted light in order to keep only the photons that are of interest. As a consequence you will also focus on the development of intgrated filters with high rejection rate.
Topologic optimization of µLED's optical performance
The performance of micro-LEDs (µLEDs) is crucial for micro-displays, a field of expertise at the LITE laboratory within CEA-LETI. However, simulating these components is complex and computationally expensive due to the incoherent nature of light sources and the involved geometries. This limits the ability to effectively explore multi-parameter design spaces.
This thesis proposes to develop an innovative finite element method to accelerate simulations and enable the use of topological optimization. The goal is to produce non-intuitive designs that maximize performance while respecting industrial constraints.
The work is divided into three phases:
- Develop a fast and reliable simulation method by incorporating appropriate physical approximations for incoherent sources and significantly reducing computation times.
- Design a robust topological optimization framework that includes fabrication constraints to generate immediately realizable designs.
- Realize such a metasurface on an existing shortloop in the laboratory. This part is optional and will be tackled only if we manage to seize an Opportunity to finance the prototype, via the inclusion of the thésis inside the "metasurface
topics" of european or IPCEI projets in the lab .
The expected results include optimized designs for micro-displays with enhanced performance and a methodology that can be applied to other photonic devices and used by other laboratories from DOPT.