Surface technologies for enhanced superconducting Qubits lifetimes
Materials imperfections in superconducting quantum circuits—in particular, two-level-system (TLS) defects—are a major source of decoherence, ultimately limiting the performance of qubits. Thus, identifying the microscopic origin of possible TLS defects in these devices and developing strategies to eliminate them is key to superconducting qubit performance improvement. This project proposes an original approach that combines the passivation of the superconductor’s surface with films deposited by Atomic Layer Deposition (ALD), which inherently have lower densities of TLS defects, and thermal treatments designed to dissolve the initially present native oxides. These passivating layers will be tested on 3D Nb resonators than implemented in 2D resonators and Qubits and tested to measure their coherence time. The project will also perform systematic material studies with complementary characterization techniques in order to correlate improvements in qubit performances with the chemical and crystalline alteration of the surface.
https://iramis.cea.fr/lidyl/pisp/150720-2/
Recent advances in ultrafast optics and the control of highly nonlinear light–matter interactions now make it possible to generate attosecond light pulses (1 as = 10?¹8 s) through High-Order Harmonic Generation (HHG). This process converts a femtosecond laser pulse into coherent, ultrashort radiation in the extreme ultraviolet (XUV) range (10–150 eV). These unique light sources enable access to electronic dynamics on sub-femtosecond timescales and allow the probing of element-specific transitions that were previously only achievable at large-scale facilities such as synchrotrons. The Attophysics Group at LIDYL, a pioneer in the generation, characterization, and application of attosecond pulses, has recently developed sources driven by beams carrying spin (SAM) or orbital (OAM) angular momentum, opening new avenues for studying chiral and magnetic dynamics. Building on these advances, this PhD project aims to synthesize light fields with time- and space-dependent chirality, exploiting in particular the often-neglected longitudinal component of the electric field. Three regimes will be explored: a linear regime (XUV/IR pump–probe), a strongly nonlinear regime (structured visible–IR fields in chiral samples), and a weakly nonlinear regime (IR pump/XUV probe). This work will open a new class of attosecond physics experiments, bridging fundamental exploration and emerging applications.
The student will acquire practical knowledge about lasers, in particular femtosecond lasers, and hands on spectrometric techniques of charged particles. They will also study strong field physical processes which form the basis for high harmonic generation. They will become an expert in attosecond physics. The acquisition of analysis skills, computer controlled experiments skills will be encouraged although not required.
Details at https://iramis.cea.fr/lidyl/pisp/150720-2/
Euclid Weak Lensing Cluster Cosmology inference
Galaxy clusters, which form at the intersection of matter filaments, are excellent tracers of the large-scale matter distribution in the Universe and are a valuable source of information for cosmology.
The sensitivity of the Euclid space mission (launch in 2023) allow blind detection of galaxy clusters through gravitational lensing (i.e. directly linked to the projected total mass). Combined with its wide survey area (14,000 deg²), Euclid should allow the construction of a galaxy cluster catalogue that is unique in both its size and selection properties.
In contrast to existing cluster catalogues, which are typically based on baryonic content (e.g., X-ray emission from intra-cluster gas, the Sunyaev-Zel’dovich effect in the millimeter regime, or optical emission from galaxies), a catalogue derived from gravitational lensing is directly sensitive to the total mass of the clusters. This makes it truly representative of the underlying cluster population, a significant advantage for both galaxy cluster studies and cosmology.
In this context, we have developed a multi-scale detection method specifically designed to identify galaxy clusters based only on their gravitational lensing signal, which has been pre-selected to produce the Euclid cluster catalogue.
The goal of this PhD project is to build and characterize the galaxy cluster catalogue identified via weak lensing in the data collected during the first year of Euclid observations (DR1), based on this detection method. The candidate will derive cosmological constraints from the modelling of the cluster abundance, using the classical Bayesian framework, and will also investigate the potential of Simulation-Based Inference (SBI) methods for cosmological inference.
Photo- and thermocatalytic cross-coupling of esters for the synthesis of biosourced alkenes
The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed a rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change, require changing for a more sustainable model. Bio-based feedstock is a promising source of carbon to substitute petrochemicals but require a drastic change of the actual model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e. the transformation of CO2 and biomass feedstock that are already highly oxidized materials demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.
In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the PhD candidate will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in catalyzed cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.
LOW THERMAL CONDUCTIVITY MECHANISMS IN RARE-EARTH OXIDES
Understanding the parameters which determine the magnitude of thermal conductivity (k) in solids is of both fundamental and technological interests. k is sensitive to all quasiparticles carrying energy, whether charged or neutral. Foremost among these are phonons, the collective vibrations of atoms in crystals. Measurements of k, however, have also identified more exotic carriers like spinons in the antiferromagnetic Heisenberg chain. In terms of applications, thermal properties of solids are at the heart of major social and environmental issues. The need, for instance, for highly efficient thermoelectric and thermal barrier devices to save energy has driven the quest for low thermal conductors. Over time, a range of strategies has thus been suggested to hinder phonon velocities and/or mean free paths: use of weak interatomic bonds, strong anharmonicity, nanoscale designs, or complex or disordered unit cells. Another promising concept to further impair the phonon mean-free path is based on magneto-elastic coupling.
Still in its infancy, this concept has emerged from the observation of a spin-phonon coupling in a variety of rare-earths based materials. The magnetic excitations involved in the magnetoelastic coupling at play in those compounds are not standard magnons, but low energy crystal field excitations (CEF). Since the latter are local electronic excitations, they do not disperse and thus cannot be associated with propagating quasiparticles. In other words, they are not potential heat carriers hence do not contribute to k, in contrast with dispersive magnetic quasiparticles like magnons. However, they can significantly reduce the phonon lifetime by opening a new scattering mechanism.
The aim of the PhD thesis is therefore to investigate, both experimentally and theoretically, magnetoelastic coupling and its impact on thermal conductivity. The systems to be studied will be (but not restricted to) Tb perovskites, and will include high-entropy or entropy stabilized compositions, displaying glass-like thermal conductivity.
From Detector to Discovery: Constructing the ATLAS Inner Tracker and Probing Higgs Physics at the HL-LHC
This PhD project combines work on the construction of the new Inner Tracker (ITk) for the ATLAS experiment and an analysis of ATLAS sensitivity at the High-Luminosity LHC (HL-LHC) to key processes related to Higgs boson physics using ITk. The candidate will take part in the development, operation, and optimization of the test benches for ITk pixel modules at CEA. Together with two other partner laboratories in the Paris region, CEA will assemble and test about 20% of the ITk pixel modules. The student will contribute to the commissioning of the detector at CERN. The candidate will also carry out HL-LHC sensitivity studies of the interactions between the Higgs boson and the top quark, including for instance a CP-violation analysis in the ttH channel and an analysis of tH production, a process particularly sensitive to the Higgs–top and Higgs–W couplings. The first two years of the PhD are expected to be based at CEA Saclay, while the last year will be based at CERN.
Joint simulation-based inference of tSZ maps and Euclid's weak lensing
Context:
The Euclid mission will provide weak lensing measurements with unprecedented precision, which have the potential to revolutionise our understanding of the Universe. However, as the statistical uncertainties decrease, controlling systematic effects becomes even more crucial. Among these, baryonic feedback, which redistributes gas within galaxies and clusters, remains one of the key astrophysical systematic effects limiting Euclid’s ability to constrain the equation of state of dark energy. Understanding baryonic feedback is one of the urgent challenges of cosmology today.
The thermal Sunyaev-Zel’dovich (tSZ) effect provides a unique window into the baryonic component of the Universe. This effect arises from the scattering of cosmic microwave background (CMB) photons by hot electrons in galaxy groups and clusters. This is the same hot gas that has been redistributed by baryonic feedback and is particularly relevant for weak lensing cosmology. The cross-correlation between tSZ and weak lensing (WL) probes how baryons trace and modify the cosmic structures, allowing joint constraints on cosmology and baryonic physics.
Most current tSZ-WL analyses rely on fitting angular power spectra under the assumption of a Gaussian likelihood. However, the tSZ signal is highly non-Gaussian, as it traces the massive structures of the Universe, and the power spectra fail to fully capture the information in the data. To unlock the scientific potential of the tSZ-WL analyses, it is essential to move beyond these simplifying assumptions.
PhD thesis:
The goal of this PhD project is to develop a novel simulation-based framework to jointly analyse tSZ and Euclid’s WL data. This framework will combine physically motivated forward models with advanced statistical and machine-learning techniques to provide accurate measurements of baryonic feedback and cosmological parameters. By jointly analysing tSZ and WL measurements, this project will increase the accuracy of Euclid’s cosmological analyses and improve our understanding of the dark matter-baryon connection.
Cosmology with the Lyman-alpha forest from the DESI cosmological survey.
We use the large-scale distribution of matter in the universe to test our cosmological models. This is primarily done using baryon acoustic oscillations (BAO), which are measured in the two-point correlation function of this distribution. However, the entire matter field contains information at various scales, allowing us to better constrain our models than BAO alone. At redshifts greater than 2, the Lyman-alpha forest is the best probe of this matter distribution. The Lyman-alpha forest is a set of absorption lines measured in the spectra of distant sources. The large DESI spectroscopic survey has collected approximately one million of these spectra. Using the partial data set "DR2," we measured the BAO with an accuracy of 0.7%, which strongly constrains the expansion rate of the universe during the first billion years of its evolution.
This thesis aims to exploit the full set of large-scale Lyman-alpha data from DESI to obtain the strongest constraints on cosmological models possible. First, the student will apply a method known as reconstruction to improve the accuracy of BAO measurements by exploiting information from the matter density field. For the remainder of the thesis, the student will implement a new method known as simulation-based inference. Similar efforts have been carried out in our group with DESI galaxies. In this approach, the entire matter field is used directly to estimate cosmological parameters, particularly dark energy. Thus, the student will make an important contribution to DESI's final cosmological measurements with Lyman-alpha.
An internship is preferred before beginning this thesis.
In recent years, progress in the field of frustrated magnets have led to the emergence of innovative concepts including new phases of matter. The latter’s do not show any long-range order (no symmetry breaking), but, in classical systems, exhibit a highly degenerate ground state made of classical configurations. An emblematic example is spin ice in pyrochlores : in this case, the construction of those configurations relies on a simple rule, which states that the sum of the four spins in any tetrahedron of the magnetic lattice must be zero. This so-called “ice rule” can be understood as the conservation rule of an emergent gauge field. Experimental evidence of this physics was provided by the observation of singular points in the spin-spin correlation function by elastic neutron scattering experiments. Such singular points, called pinch points, arise because the correlations of the emergent divergence free field are dipolar in nature, with
algebraic spin-spin correlations.
The origin of this physics lies in the conjunction between lattice connectivity, anisotropy and magnetic interactions, which collude to select configurations where a local constraint between spins is preserved. Recently, several authors have proposed a generalization of this concept to other geometries and other constraints, as for instance the “octochlore” lattice, formed by corner sharing octahedra.
Depending on the chosen constraint, different spin liquids have been theoretically predicted.
An experimental realization of the octochlore lattice can be found in rare earth fluorides KRE3F10, as their crystal structure forms a “breathing” network of small and large RE octahedra. Very little is known about the physics of KRE3F10 compounds, apart from magnetization measurements performed two decades ago. The goal of the PhD work will be to characterize the ground state of two Kramers members of the KRE3F10 system (RE = Dy3+, Er3+), to identify in particular any signature of the spin liquid physics suggested by recent theoretical works, and better understand the constraints leading to it.
Unbiased Shear Estimation for Euclid with Automatically Differentiable and GPU Accelerated Modeling
This PhD project focuses on achieving unbiased measurements of weak gravitational lensing — the tiny distortions in galaxy shapes caused by the matter along the line of sight. This technique is key to studying dark matter, dark energy, and gravity, and lies at the heart of the Euclid space mission launched in 2023. Traditional shape-measurement methods introduce systematic biases in shear estimation. The goal of this PhD is to develop and extend an innovative forward-modelling approach that directly infers the shear by simulating realistic galaxy images using deep-learning architectures. The student will adapt this framework to real Euclid data, accounting for the complexity of the Science Ground Segment (SGS) and implementing GPU-accelerated and high-performance computing solutions to scale to the full sky coverage. The project is timely, coinciding with Euclid’s first public data release in 2026. The expected outcome is a more accurate and robust shear estimation method, enabling the next generation of precision cosmology analyses.