Optimising the enzymatic degradation of polylactic acid (PLA) to produce biohydrogen (BioH2) through photofermentation.

This thesis project presents a novel method of producing biohydrogen (BioH2) through the enzymatic breakdown of polylactic acid (PLA), a bioplastic which is challenging to recycle. The aim is to optimise the hydrolysis of PLA into lactic acid, which can be metabolised directly by purple non-sulfur bacteria (PNSB) to produce BioH2 in anoxic conditions. The work will entail selecting high-performance esterases in collaboration with Génoscope CEA, expressing them in soluble form in model hosts such as E. coli, yeasts and PNSB, and optimising reaction conditions such as pH, temperature and concentration to maximise lactic acid production. The second phase will focus on enhancing photofermentation in a photobioreactor (PBR) with advanced control systems (LED, AI and CFD). Funded by the CEA and PUI Grenoble Alpes, this project is part of a circular economy approach, aiming to develop a scalable process for converting PLA waste into renewable energy in line with the challenges of the energy transition.

Elliptic Flow of Charmed Hadrons in Heavy-Ion Collisions at LHCb?

The FLOALESCENCE project explores one of the most fundamental questions in Quantum Chromodynamics (QCD): how quarks and gluons transition from a deconfined Quark–Gluon Plasma (QGP) into ordinary hadrons.?This transition, called hadronization, occurred microseconds after the Big Bang and can be recreated today in ultra-relativistic lead–lead collisions at CERN’s Large Hadron Collider (LHC).
The PhD will focus on charm quarks—excellent probes of the QGP because they are produced early in the collision and interact throughout its evolution. Using the LHCb detector, uniquely sensitive in the forward rapidity region, the project aims to measure the elliptic flow (v2) of charmed baryons (?c+) and mesons (D0) in Pb–Pb collisions.?The goal is to test whether these heavy quarks thermalize and hadronize through a coalescence mechanism, a key feature of QGP dynamics.

Objectives and tasks:
- Extract and analyze ?c+ and D0 signals in newly collected 2024–2025 Pb–Pb datasets at LHCb.
- Implement a novel flow analysis method (based on the reformulated Lee–Yang Zeros approach) for the first time at LHCb.
- Develop an event-by-event multiplicity metric to correlate flow with system energy density.
- Compare results to theoretical models and cross-check with measurements at central rapidity (ALICE).
- Publish results and present findings at international conferences.

The successful candidate will:
- Develop advanced data-analysis expertise with CERN’s LHCb software framework, ROOT, and machine learning–based signal extraction.
- Gain in-depth knowledge of QCD and relativistic heavy-ion physics, especially QGP properties and collective phenomena.
- Learn modern statistical methods for flow analysis and uncertainty estimation.
- Acquire collaborative and communication skills within a major international experiment (LHCb), including presentations in collaboration meetings and conferences.
- Build strong experience in scientific computing, big-data handling, and detector physics, valuable for both academic and industry careers.

Effect of gamma-ray irradiation on ferroelectric, hafnia-based, non-volatile memory for use in extreme environments

The emergence of hafnia-based ferroelectric (FE) memories has opened a new paradigm for ultra-low-power edge computing. Hafnia is fully compatible with CMOS technology and is ultra low-power—three orders of magnitude less than other emerging memory technologies.
These advantages align with strategic applications in space, defense, medical, nuclear safety, and heavy-duty transport, where electronics face harsh radiation environments.
Imprint induces a shift of the Polarization-Voltage (P-V) curve along the voltage axis and is attributed to charge trapping/detrapping, domain pinning and charged defects. All may be accentuated under irradiation.
The project will use advanced photoelectron spectroscopy techniques including synchrotron radiation induced Hard X-ray photoelectron spectroscopy and complementary structural analysis including high-resolution electron microscopy, X-ray diffraction and near field microscopy. The experimental characterization will be accompanied by theoretical calculations to simulate the material response to irradiation
The work will be carried out in the framework of close collaboration between the CEA/Leti in Grenoble providing the samples, integrated devices and wafer scale characterization and the CEA/Iramis in Saclay for the fundamental analysis of the material properties, irradiation experiments and device scale characterizations.

In situ and real-time characterization of nanomaterials by plasma spectroscopy

The objective of this Phd is to develop an experimental device to perform in situ and real time elemental analysis of nanoparticles during their synthesis (by laser pyrolysis or flame spray pyrolysis). Laser-Induced Breakdown Spectroscopy (LIBS) will be used to identify the different elements present and their stoichiometry.
Preliminary experiments conducted at LEDNA have shown the feasibility of such a project and in particular the acquisition of a LIBS spectrum of a single nanoparticle. Nevertheless, the experimental device must be developed and improved in order to obtain a better signal to noise ratio, to increase the detection limit, to take into account the different effects on the spectrum (effect of nanoparticle size, complex composition or structure), to automatically identify and quantify the elements present.
In parallel, other information can be sought (via other optical techniques) such as the density of nanoparticles, the size or shape distribution.

Numerical and experimental study of cryogenic refrigeration system for HTS-based nuclear fusion reactors

The challenge of climate change and the promise of CO2-free energy production are driving the development of new nuclear fusion reactor concepts that differ significantly from systems such as ITER or JT60-SA [R1]. These new fusion reactors push the technological boundaries by reducing investment and operating costs through the use of high-temperature magnets (HTS) to confine the plasma [R4]. These HTS promise to achieve high-intensity magnetic fields while operating at higher cooling temperatures, thereby reducing the complexity of cryogenic cooling, which is normally achieved by forced circulation of supercritical helium at approximately 4.5 K (see 1.8 K for WEST/Tore Supra) delivered by a dedicated cryogenic plant.

The pulsed operation of tokamaks induces a temporal variation in the thermal load absorbed by the cooling system. This operating scenario has led to the development of several load smoothing techniques to reduce the amplitude of these thermal load variations, thereby reducing the size and power of the cooling system, with beneficial effects on cost and environmental impact. These techniques use liquid helium baths (at approximately 4 K) to absorb and temporarily store some of the thermal energy released by the plasma pulse before transferring it to the cryogenic installation [R5].

The objective of this thesis is to contribute to the development of innovative concepts for the refrigeration of large HTS systems at temperatures between 5 and 20 K. It will include (1) the modeling of cryogenic system and cryodistribution architectures as a function of the heat transfer fluid temperature, and (2) the exploration of innovative load smoothing techniques in collaboration with the multidisciplinary "Fusion Plant" team of the PEPR SUPRAFUSION project. The first part will involve the development and improvement of 0D/1D numerical tools called Simcryogenics, based on Matlab/Simscape [R6], through the implementation of physical models (closure laws) and the selection of appropriate modeling techniques to analyze and compare suitable architectural solutions. The second part will be experimental and will involve conducting load smoothing experiments using an existing cryogenic loop operating between 8 and 15 K.

This activity will be at the forefront of the nuclear fusion revolution currently underway in Europe [R3, R7] and the United States [R4], addressing a wide range of cryogenic engineering fields such as refrigeration technologies, superfluid helium, thermo-hydraulics, materials properties, system and subsystem design, and the design and execution of cryogenic tests. It will thus be useful for the development of new generations of particle accelerators using HTS magnets.

[R1] Cryogenic requirements for the JT-60SA Tokamak https://doi.org/10.1063/1.4706907]
[R2] Analysis of Cryogenic Cooling of Toroidal Field Magnets for Nuclear Fusion Reactorshttps://hdl.handle.net/1721.1/144277
[R3] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/fusion-energy-technology/
[R4] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/hts-business/
[R5] “Forced flow cryogenic cooling in fusion devices: A review” https://doi.org/10.1016/j.heliyon.2021.e06053
[R6] “Simcryogenics: a Library to Simulate and Optimize Cryoplant and Cryodistribution Dynamics”, 10.1088/1757-899X/755/1/012076
[R7] https://renfusion.eu/
[R8] PEPR Suprafusion https://suprafusion.fr/

Probing quantum information with the top quark at the LHC

This PhD project aims to explore the quantum nature of top-quark pair production at the Large Hadron Collider by studying spin correlations and entanglement-related observables in data recorded by the ATLAS experiment. The recent breakthrough observations of entanglement in top-antitop events have opened an entirely new window onto the quantum structure of fundamental interactions, transforming the LHC into a machine to test quantum information at the TeV scale. Building on this momentum, the thesis will focus on reconstructing the quantum state of top-quark pairs using ATLAS Run-3 data, with particular attention to the extraction of spin correlations and entanglement-sensitive observables in challenging high-momentum topologies. By improving reconstruction strategies and carefully assessing detector effects, the aim is to measure quantum properties with good precision and to contribute to understand what quantum information can bring us to our understanding of elementary particles.

Lightweight and high-strength metamaterials with innovative architectures manufactured by additive manufacturing for constrained environments

Environmental constraints, rising raw material costs, and the need to reduce carbon footprints drive the development of more porous materials that combine lightness with mechanical strength. Such materials meet the requirements of strategic sectors including aerospace, space, transportation, energy, and high-performance physics instruments.

Mechanical metamaterials, composed of micro-lattice structures produced by 3D printing, offer a unique potential to address these challenges. By tailoring the topology of their internal networks, it becomes possible to achieve stiffness-to-density ratios higher than those of conventional materials and to adapt their architecture to target specific mechanical or functional properties.

This thesis is part of this wave of innovation. It aims to develop ultralight metallic metamaterials whose architecture is optimized to maximize mechanical performance while maintaining isotropy, ensuring predictable behavior using conventional engineering tools, including finite element analysis, numerical simulation, and multiscale approaches. The research builds on the recognized expertise of the CEA, particularly at IRAMIS and IRFU/DIS, in designing isotropic random metastructures and shaping them through metal additive manufacturing.

By combining numerical mechanics, advanced design, multi-process additive manufacturing, and in situ characterization, this thesis seeks to push the current limits of design and fabrication of complex metallic structures.

Bottom-up synthesis of nanographene and study of their optical and electronic properties

This project is part of an ANR project, which aims to synthesize perfectly soluble and individualized graphene nanoparticles in solution and incorporate them into spin electronics devices. To do this, we will draw on the laboratory's experience in synthesizing and studying the optical properties of graphene nanoparticles to propose original structures to several groups of physicists who will be responsible for studying the optical and electronic properties and manufacturing spin valve-type devices.

SEARCH FOR DIFFUSE EMISSIONS AND SEARCHES IN VERY-HIGH-ENERGY GAMMA RAYS AND FUNDAMENTAL PHYSICS WITH H.E.S.S. AND CTAO

Observations in very-high-energy (VHE, E>100 GeV) gamma rays are crucial for understanding the most violent non-thermal phenomena at work in the Universe. The central region of the Milky Way is a complex region active in VHE gamma rays. Among the VHE gamma sources are the supermassive black hole Sagittarius A* at the heart of the Galaxy, supernova remnants and even star formation regions. The Galactic Center (GC) houses a cosmic ray accelerator up to energies of PeV, diffuse emissions from GeV to TeV including the “Galactic Center Excess” (GCE) whose origin is still unknown, potential variable sources at TeV, as well as possible populations of sources not yet resolved (millisecond pulsars, intermediate mass black holes). The GC should be the brightest source of annihilations of massive dark matter particles of the WIMPs type. Lighter dark matter candidates, axion-like particles (ALP), could convert into photons, and vice versa, in magnetic fields leaving an oscillation imprint in the gamma-ray spectra of active galactic nuclei (AGN).
The H.E.S.S. observatory located in Namibia is composed of five atmospheric Cherenkov effect imaging telescopes. It is designed to detect gamma rays from a few tens of GeV to several tens of TeV. The Galactic Center region is observed by H.E.S.S. for twenty years. These observations made it possible to detect the first Galactic Pevatron and place the strongest constraints to date on the annihilation cross section of dark matter particles in the TeV mass range. The future CTA observatory will be deployed on two sites, one in La Palma and the other one in Chile. The latter composed of more than 50 telescopes will provide an unprecedented scan of the region of the Galactic Center.
The proposed work will focus on the analysis and interpretation of H.E.S.S observations carried out in the Galactic Center region for the search for diffuse emissions (populations of unresolved sources, massive dark matter) as well as observations carried out towards a selection of active galactic nuclei for the search for ALPs constituting dark matter. These new analysis frameworks will be implemented for the CTA data analyses. An involvement in the commissioning of the first MSTs in Chile and in the data analysis for early science are expected.

Large scale simulation and machine learning in nucleon structure

The PhD proposal investigates the nucleon’s three-dimensional structure using Generalized Parton Distributions (GPDs). GPDs give access to the spatial distribution of quarks and gluons, the energy-momentum tensor, and thus information on spin, internal pressure, and mass. Two main challenges arise: scarce exclusive experimental data and the high cost of precise lattice-QCD simulated observables. The project comprises two parts: (I) generate new lattice-QCD simulations of GPD moments, improve algorithms, and perform continuum extrapolations; (II) create machine-learning tools to tackle the ill-posed inverse problem and conduct global fits that combine experimental and simulated data. The work will be carried out at the European Joint Virtual Lab AIDAS shared between Julich Forschungszentrum (Germany) and CEA (France), with equal time spent in each country. Required skills include quantum field theory, object-oriented programming (C++, Python), and high-performance computing. The ultimate goal is the first reliable extraction of the nucleon’s 3-D structure, informing future facilities such as the EIC and EicC.

Top