Advanced characterization of ferroelectric domains in hafnia-based thin films
Les mémoires ferroélectriques à accès aléatoire (FeRAM en anglais) à base d'oxyde d’hafnium et de zirconium (HZO) sont intrinsèquement ultra-faibles en consommation grâce au mécanisme de changement de tension, au potentiel de mise à l'échelle du HZO en dessous de 10 nm et à la compatibilité CMOS complète. De plus, elles présentent une faible latence nécessaire à une grande variété d'applications de logique et de mémoire. La compréhension des mécanismes sous-jacents et de la cinétique du ‘switching’ des domaines ferroélectriques est essentielle pour une conception intelligente des FeRAMs avec des performances optimales.
Cette thèse porte sur la caractérisation complète des domaines ferroélectriques (FE) dans des films HZO ultra-minces. L'étudiant utilisera plusieurs techniques d'imagerie de surface (microscopie à force piézoélectrique, PFM, microscopie électronique à basse énergie, LEEM, et microscopie électronique à photoémission de rayons X, PEEM) combinées à des méthodes avancées de caractérisation operando (détection résolue dans le temps couplée au rayonnement synchrotron). Ce projet marquera une avancée importante dans la recherche fondamentale des mécanismes de basculement de polarisation des couches FE ultra-minces à base d'hafnium, en élucidant les effets spécifiques de l'interface électrode métallique/couche FE dans le comportement électrostatique des condensateurs étudiés. Il permettra à terme une avancée significative dans le développement industriel des mémoires émergentes ferroélectriques, essentielles pour les applications d'intelligence artificielle (IA) à grande échelle.
First observations of the TeV gamma-ray sky with the NectarCAM camera for the CTA observatory
Very high energy gamma-ray astronomy is a relatively young part of astronomy (30 years), looking at the sky above 50 GeV. After the success of the H.E.S.S. array in the 2000s, an international observatory, the Cherenkov Telescope Array (CTA), should start operating by 2026. This observatory will include a total of 50 telescopes, distributed on two sites. IRFU is involved in the construction of the NectarCAM, a camera intended to equip the "medium" telescopes (MST) of CTA. The first NectarCAM (of the nine planned) is being integrated at IRFU and will be shipped on site in 2025. Once the camera is installed, the first astronomical observations will take place, allowing to fully validate the functioning of the camera. The thesis aims at finalizing the darkroom tests at IRFU, preparing the installation and validating the operation of the camera on the CTA site with the first astronomical observations. It is also planned for the student to participate in H.E.S.S. data analysis on astroparticle topics (search for primordial black holes, constraints on Lorentz Invariance using distant AGN).
Influence of ionization density in water on fluorescent solutes. Application to the detection of alpha radiation
The location and rapid identification, at a distance, of sources of alpha and beta particle emissions on surfaces or in wet cavities or solutions, in nuclear facilities undergoing decommissioning or to be cleaned up, is a real challenge.
The aim of the proposed PhD project is to develop a concept for the remote detection of fluorescence light from water radiolysis processes on molecules or nano-agents. Temporal characterization using fluorescence lifetime measurements will enable detection to be attributed to a type of radiation, depending on its linear energy transfer (LET). In the Bragg peak of alpha radiation, where the TEL is maximal, the ionization density due to this TEL influences the fluorescence lifetime. However, dose rate effects also need to be considered.
Molecules and nanoparticles that are candidates for forming fluorescent products and are sensitive to the ionization density and radicals produced in traces at very short times will be identified by guided bibliography work, then tested and compared by measurements. Spectral measurements (absorption and fluorescence) and fluorescence lifetimes of the corresponding fluorescent species will be carried out using the multi-channel (16-channel) TCSPC (Time Corelated Single Photon Counting) method. Ion beams or alpha particles from sealed sources will be used for proof-of-concept. Ion beams or alpha particles from sealed sources will be used for proof-of-concept in the CEA clean-up/dismantling program.
ARTIFICIAL INTELLIGENCE TO SIMULATE BIG DATA AND SEARCH FOR THE HIGGS BOSON DECAY TO A PAIR OF MUONS WITH THE ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDER
There is growing interest in new artificial intelligence techniques to manage the massive volume of data collected by particle physics experiments, particularly at the LHC collider. This thesis proposes to study these new techniques for simulating the rare-event background from the two-muon decay of the Higgs boson, as well as to implement a new artificial intelligence method for simulating the response of the muon spectrometer detector resolution, which is crucial for this analysis.
SEARCH FOR DIFFUSE EMISSIONS AND SEARCHES IN VERY-HIGH-ENERGY GAMMA RAYS AND FUNDAMENTAL PHYSICS WITH H.E.S.S. AND CTAO
Observations in very-high-energy (VHE, E>100 GeV) gamma rays are crucial for understanding the most violent non-thermal phenomena at work in the Universe. The central region of the Milky Way is a complex region active in VHE gamma rays. Among the VHE gamma sources are the supermassive black hole Sagittarius A* at the heart of the Galaxy, supernova remnants and even star formation regions. The Galactic Center (GC) houses a cosmic ray accelerator up to energies of PeV, diffuse emissions from GeV to TeV including the “Galactic Center Excess” (GCE) whose origin is still unknown, potential variable sources at TeV, as well as possible populations of sources not yet resolved (millisecond pulsars, intermediate mass black holes). The GC should be the brightest source of annihilations of massive dark matter particles of the WIMPs type. Lighter dark matter candidates, axion-like particles (ALP), could convert into photons, and vice versa, in magnetic fields leaving an oscillation imprint in the gamma-ray spectra of active galactic nuclei (AGN).
The H.E.S.S. observatory located in Namibia is composed of five atmospheric Cherenkov effect imaging telescopes. It is designed to detect gamma rays from a few tens of GeV to several tens of TeV. The Galactic Center region is observed by H.E.S.S. for twenty years. These observations made it possible to detect the first Galactic Pevatron and place the strongest constraints to date on the annihilation cross section of dark matter particles in the TeV mass range. The future CTA observatory will be deployed on two sites, one in La Palma and the other in Chile. The latter composed of more than 50 telescopes will provide an unprecedented scan of the region on the Galactic Center.
The proposed work will focus on the analysis and interpretation of H.E.S.S observations. carried out in the Galactic Center region for the search for diffuse emissions (populations of unresolved sources, massive dark matter) as well as observations carried out towards a selection of active galactic nuclei for the search for ALPs constituting dark matter. These new analysis frameworks will be implemented for the future CTA analyses. Involvement in taking H.E.S.S. data. is expected.
Covalent 2D organic nanostructures by optically controlled cross-linking of molecular self-assemblies
The self-assembly of molecules on crystalline substrates leads to non-covalent 2D structures with interesting properties for various fields such as optoelectronics and sensors. The stabilization of these 2D networks into covalent networks, while preserving these properties, is a major challenge and a topical issue. Various demonstrations show that crosslinking can be triggered by thermal processes. Photocrosslinking, on the other hand, is poorly described and the few examples that have been found involve ultra-high vacuum conditions.
Building on our previously developed know-how and the additional expertise of chemist collaborators, we therefore propose to carry out photocrosslinking of 2D networks at atmospheric pressure. We will use a model oligophenyl system that will be functionalized to allow photocrosslinking towards the production of a covalent 2D network. The resulting networks will be characterized through the correlation of optical spectroscopy and local probe microscopy to monitor and highlight photo-induced cross-linking processes at wavelength scale.
STUDY OF THE MULTI-SCALE VARIABILITY OF THE VERY HIGH ENERGY GAMMA-RAY SKY
Very high energy gamma ray astronomy observes the sky above a few tens of GeV. This emerging field of astronomy has been in constant expansion since the early 1990s, in particular since the commissioning of the H.E.S.S. array in 2004 in Namibia. IRFU/CEA-Paris Saclay is a particularly active member of this collaboration from the start. It is also involved in the preparation of the future CTAO observatory (Cherenkov Telescope Array Observatory), which is now being installed. The detection of gamma rays above a few tens of GeV makes it possible to study the processes of charged particles acceleration within objects as diverse as supernova remnants or active galactic nuclei. Through this, H.E.S.S. aims in particular at answering the century-old question of the origin of cosmic rays.
H.E.S.S. allows measuring the direction, the energy and the arrival time of each detected photon. The time measurement makes it possible to highlight sources which present significant temporal or periodic flux variations. The study of these variable
Direction de la Recherche Fondamentale
Institut de recherche
sur les lois fondamentales de l’univers
emissions (transient or periodic), either towards the Galactic Center or active nuclei of galaxies (AGN) at cosmological distance allows for a better understanding of the emission processes at work in these sources. It also helps characterizing the medium in which the photons propagate and testing the validity of some fundamental physical laws such as Lorentz invariance. It is possible to probe a wide range of time scales variations in the flux of astrophysical sources. These time scales range from a few seconds (gamma ray bursts, primordial black holes) to a few years (binary systems of high mass, active galaxy nuclei).
One of the major successes of H.E.S.S.'s two decades of data-taking. was to conduct surveys of the galactic and extragalactic skies in the very-high energy range. These surveys combine observations dedicated to certain sources, such as the Galactic Center or certain remains of supernovae, as well as blind observations for the discovery of new sources. The thesis subject proposed here concerns an aspect of the study of sources which remains to be explored: the research and study of the variability of very-high energy sources. For variable sources, it is also interesting to correlate the variability in other wavelength ranges. Finally, the source model can help predict its behavior, for example its “high states” or its bursts.
Control of trapped electron mode turbulence with an electron cyclotron resonant source
The performance of a tokamak plasma largely depends on to the level of turbulent transport. Trapped electron modes are one of the main instabilities responsible for turbulence in tokamaks. On the other hand, electron cyclotron resonance heating is a generic heating system for tokamaks. Both physical processes rely on resonant interactions with electrons. Non-linear interaction between the resonant processes is theoretically possible. This thesis aims to evaluate the possibility of exploiting this non-linear interaction to stabilize the trapped electron modes instability within tokamak plasmas, using a heating source present on many tokamaks, including ITER. This control technique could improve the performance of certain tokamaks without any extra cost.
The thesis will be based on a theoretical understanding of the two processes studied, will require the use of the gyrokinetic code GYSELA to model the non-linear interactions between resonant processes, and will include an experimental aspect to validate the identified turbulence control mechanism.
Towards a cellular factory producing biohydrocarbons: biology and biotechnology of an emerging streptophyte microalgal model
In the evolutionary history of living organisms, the gradual adaptation of certain aquatic microalgae to an aero-terrestrial way of life was a crucial period, as it gave rise to all present-day terrestrial plants. Recent sequencing of the genomes of streptophytic algae, a group little studied until now, has begun to shed light on this evolutionary process. The appearance in ancestral streptophytic algae of the ability to synthesize and excrete hydrophobic compounds such as hydrocarbons, capable of forming a water-impermeable protective layer on the cell surface, was necessarily an important step in survival and adaptation to the aerial environment. Today, the inability of industrial algae to excrete hydrocarbons is a major biotechnological barrier to the biosourced production of hydrocarbons for green chemistry and fuels. The aim of this thesis project is therefore twofold: firstly, to characterize the synthesis and excretion pathways of hydrophobic compounds in an algae that is an emerging model of streptophyte algae and the only one in which hydrocarbon synthesis enzymatic equipment similar to that found in plants is present; secondly, for applied purposes, to use genetic engineering approaches to determine a set of proteins that will maximize hydrocarbon synthesis and excretion in this model alga.