The MINI-BINGO demonstrator: advancing the quest to unveil the neutrino nature
BINGO is an innovative neutrino physics project designed to lay the groundwork for a large-scale bolometric experiment dedicated to the search for neutrinoless double beta decay. The goal is to achieve an extremely low background index—on the order of 10^-5 counts/(keV·kg·yr)—while delivering excellent energy resolution in the region of interest. These performance levels will enable the exploration of lepton number violation with unprecedented sensitivity.
The project relies on scintillating bolometers, which are particularly effective at rejecting the dominant background caused by surface alpha particles. It focuses on two highly promising isotopes, 100Mo and 130Te, whose complementary properties make them both strong candidates for future large-scale investigations.
BINGO introduces three major innovations to the well-established heat-light hybrid bolometer technology. First, the sensitivity of the light detectors will be enhanced by an order of magnitude through the use of Neganov-Luke amplification. Second, a novel detector assembly design will reduce surface radioactivity contributions by at least an order of magnitude. Third, and for the first time in a macrobolometer array, an internal active shield made of ultrapure BGO scintillators with bolometric light readout will be implemented to suppress external gamma background.
As part of this thesis work, the student will take part in the assembly and installation of the MINI-BINGO demonstrator within the cryostat recently installed at the Modane Underground Laboratory. He/she will be involved in data acquisition and analysis, and will contribute to evaluating the final background rejection enabled by the performance of the detector's final configuration.
CUPID-Stage I: Detector optimization and analysis in the context of a next generation 0nbb search
The CUPID experiment (CUORE Upgrade with Particle IDentification) aims to achieve unprecedented sensitivity for the detection of neutrinoless double beta decay (0nßß) using an array of 1596 lithium molybdate (Li2MoO4) crystals of ~450 kg mass. If detected this process would be a direct observation new physics in the lepton sector: in example it violates lepton number by 2 units. Dependent on the model it can provide valuable insight into the neutrino mass-scale and possbily to matter generation in the Universe through leptogenesis.
The use of lithium molybdate for this study is particularly advantageous due to their scintillation properties and the high Q-value of the decay process, which lies above most environmental gamma backgrounds. The CUPID experiment employs this material as cryogenic calorimetric detectors, where the heat signal from particle interactions of O (100 microK/MeV) are registered in a sensitive thermistor at a temperature of ~10 mK. Thanks to the high Q-value Mo-100 features a particularly high sensitivity in terms of large phase space factor and nuclear transition matrix element. This will also allow for precision studies and tests of the standard model, through analyses of the shape of another process: the so-called 2 neutrino double beta decay (2nbb), which is a standard model allowed process. However, this rare process (half-life of 7x10^17yr) is not only an interesting particle/nuclear physics target, it is also expected to contribute the most important background in CUPID: the random coincidence of two events adding up in energy to the Q-value of the 0nßß search.
CUPID aims to deploy its new detector array in two phases: An initial detector array with 1/3 of the mass will be deployed by 2030. In the mean time several tower scale measurement and optimization campaigns during the time of this thesis project will allow to analyze and optimize the detector performance of the CUPID detector modules. The further suppression of this so called pile-up background through detector optimization (acting on the sensor attachment of the light detector with a robotic assembly station developed at CEA) and advanced analysis techniques within this thesis will allow to enhance the sensitivity and science reach of CUPID. A further extension of the analysis techniques developed in this thesis to the processing of an array of O(1000) detectors will be tested with the existing TeO2 detecor array of CUORE. In the context of this process the developed analysis techniques will contribute to the final science analyses of CUORE, the leading experiment for 0nßß search with Te-130.
ULTRAFAST SENSING BY ELECTRON AND MAJORANA FLYING QUBITS
An emerging pathway for quantum information is the use of flying electronic charges, such as single-electron excitations, as qubits.
These flying qubits present a key advantage: their intrinsic Coulomb interaction, which enables deterministic two-qubit gates and applications in quantum sensing.
Compared to photonic qubits, they therefore provide a natural means to overcome certain fundamental limitations.
Their main drawback lies in rapid decoherence, but this challenge can be mitigated by operating at ultrafast timescales, on the order of a picosecond.
An additional strategy involves exploiting the topological protection provided by Majorana modes, non-Abelian quasiparticles that are insensitive to local perturbations.
So far, most research has focused on localized 0D modes (at the ends of superconducting nanowires), with no conclusive experimental demonstrations.
This project proposes a new approach based on 1D chiral Majorana modes, offering a pathway toward topologically protected flying qubits.
The ambition is to establish a novel platform for quantum computing and quantum sensing.
This platform will exploit engineered multilayer graphene, combining the quantum anomalous Hall effect, superconductivity, and chiral Majorana modes.
Dynamic interplay of Rad51 nucleoprotein filament-associated proteins - Involvement in the regulation of homologous recombination
Homologous recombination (HR) is an important mechanism for the repair of ionizing radiation- induced DNA double-strand breaks. A key step in HR is the formation of Rad51 nucleoprotein filaments on the single-stranded DNA that is generated from these breaks. We were the first to show, using yeast as a model, that a tight control of the formation of these filaments is essential for HR not to induce chromosomal rearrangements by itself (eLife 2018, Cells 2021, Nat. Commun. 2025). In humans, the functional homologs of the yeast control proteins are tumor suppressors. Thus, the control of HR seems to be as important as the mechanism of HR itself. Our project involves the use of new molecular tools that allow a breakthrough in the study of these controls. We will use a functional fluorescent version of the Rad51 protein, developed for the first time by our collaborators A. Taddei (Institut Curie), R. Guérois and F. Ochsenbein (I2BC, Joliot, CEA). This major advance will allow us to observe the influence of regulatory proteins on DNA repair by microscopy in living cells. We have also developed highly accurate structural models of control protein complexes associated with Rad51 filaments. We will adopt a multidisciplinary approach based on genetics, molecular biology, biochemistry, and protein structure to understand the function of the regulators of Rad51 filament formation. The description of the organization of these proteins with Rad51 filaments will allow us to develop new therapeutic approaches.
Synthesis and optical properties of quantum dots
Graphene as a constituent of graphite was close to us for almost 500 years. However, it is only in 2005 that A. Geim and K. Novoselov (Nobel Prize in 2010) reported for the first time the obtaining of a nanostructure composed by a single layer of carbon atom. The exceptional electronic properties of graphene make it a very promising material for applications in electronic and renewable energies.
For many applications, one should be able to modify and control precisely the electronic properties of graphene. In this context, we propose to synthesize chemically graphene nanoparticles and study their absorption and photoluminescence properties. We will focus on families of elongated nanoparticles, with the aim of studying how size can enable us to observe and control multiexcitonic processes in these materials. This project will be developed in collaboration with Physicists so the candidate will work in a multidisciplinary environment.
Drug therapy for the management of radiation-induced hematopoietic and gastrointestinal syndromes
Nuclear technology is widely used in industry, army and medicine (diagnosis, radiotherapy and conditioning for transplants). Circumstances in which high-dose radiation exposure occurs can result in a considerable number of injuries and deaths in the absence of therapeutic intervention. These circumstances may include terrorism, accidents caused by nuclear reactor malfunctions, or radiotherapy accidents involving ionising radiation (IR) overdose. There are also medical cases of high-dose irradiation for the purpose of conditioning the patient for transplantation to treat certain diseases (acquired bone marrow failure, acute myeloblastic leukemia (AML) or hereditary aplastic anemia).
Exposure to high levels of radiation can quickly lead to acute radiation syndrome (ARS), which mainly affects hematological (blood, bone marrow) and gastrointestinal tissues in the hours, days and weeks that follow.
Hematopoietic syndrome (HS) is a major component of ARS. It develops after total body irradiation (TBI) at doses > 1 Gy and is characterized by partial or total destruction of bone marrow stem cells and their environment. The therapeutic management of HS is based on medical treatments using growth factors to stimulate residual hematopoiesis, but these may prove ineffective in cases of severe bone marrow damage. Hematopoietic stem cell transplantation is then the best treatment, but it is invasive, not always feasible due to a lack of donors, and its success rate remains extremely low, particularly due to severe side effects (risk of graft-versus-host disease).
Gastrointestinal syndrome (GIS) develops after a dose > 10 Gy (whole body or localized). It is characterized by weight loss, diarrhea and increased susceptibility to developing bacterial infections leading to septicemia. Death occurs within 5 to 12 days after irradiation. Current management is based solely on symptomatic treatments (antibiotics, anti-diarrhea drugs, anti-emetics).
It is therefore essential to develop new therapeutic methods to treat severely irradiated patients as quickly as possible after radiation exposure and with minimal side effects.
In this project, we propose to develop, through industrial and clinical collaborations, new drug therapies involving the administration of specific molecules to be tested in order to improve hematopoietic and/or intestinal recovery after irradiation.
Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomography
Introduction
Innovative functional imaging technologies are contributing to the CEA's ‘Medicine for the Future’ priority. Positron emission tomography (PET) is a nuclear medical imaging technique widely used in oncology and neurobiology. The decay of the radioactive tracer emits positrons, which annihilate into two photons of 511 keV. These photons are detected in coincidence and used to reconstruct the distribution of tracer activity in the patient's body.
We're proposing you to contribute to the development of an ambitious, patented technology: ClearMind. The first prototype is in our laboratories. This gamma photon detector uses a monolithic scintillating crystal of high density and atomic number, in which Cherenkov and scintillation photons are produced. These optical photons are converted into electrons by a photoelectric layer and multiplied in a MicroChannel plate. The induced electrical signals are amplified by gigahertz amplifiers and digitized by SAMPIC fast acquisition modules. The opposite side of the crystal will be fitted with a matrix of silicon photomultiplier (SiPM).
Today we have our first prototype, and we are preparing two more.
The proposed work
You will work in an advanced instrumentation laboratory in a particle physics environment .
The first step will be to optimize the "components" of ClearMind detectors, in order to achieve nominal performance. We'll be working on scintillating crystals, optical interfaces, photoelectric layers and associated fast photodetectors (MCP-PMT and SiPM), and readout electronics.
We will then characterize the performance of the prototype detectors on our measurement benches, which are under continuous development. The data acquired will be interpreted using in-house analysis software written in C++ and/or Python.
Finally, we will compare the physical behavior of our detectors to Monté-Carlo simulation software (Geant4/Gate).
A particular effort will be devoted to the development of ultra-fast scintillating crystals in the context of a European collaboration.
Supervision
The successful candidate will work under the joint supervision of Dominique Yvon and Viatcheslav Sharyy (DRF/IRFU & BIOMAPS). The CaLIPSO group at IRFU & BIOMAPS specializes in the development and characterization of innovative PET detectors, including detailed detector simulation. As part of the project, we are working closely with IJCLabs in Orsay, which is developing our readout and acquisition electronics, CEA/DM2S, which is working in particular on trusted AI algorithms, CPPM in Marseille, which is evaluating our detectors under PET imaging acquisition conditions, and UMR BIOMAPS (CEA/SHFJ), working on image calculation algorithms.
Requirements
Knowledge of the physics of particle-matter interaction, radioactivity and the principles of particle detectors is essential. A strong interest in instrumentation and laboratory work is recommended. Basic programming skills, e.g. C++, Gate/Geant4 physics simulation software, are important.
Skills acquired
Good knowledge of state-of-the-art particle detector and positron emission tomography technologies. Simulation principles and techniques for particle-matter interaction and detection systems. Analysis of complex data.
Contact
Dominique Yvon, dominique.yvon@cea.fr
Viatcheslav Sharyy, viatcheslav.sharyy@cea.fr