Modeling the impact of defects in Steel–Concrete Structures. Identification of critical defects through metamodeling and optimization algorithms

To meet growing constructability challenges, steel–concrete (SC) structures are emerging as a promising alternative to conventional reinforced concrete structures. These elements are composed of infill concrete, two external steel plates, and steel shear studs that ensure composite action. While such structures present a clear interest due to their overall mechanical behavior, the presence of the steel plates prevents visual inspection of the concrete casting quality. It is therefore essential to characterize the impact of possible defects. This is the context of the proposed PhD research. Building upon recent results obtained in the laboratory, the goal is to develop a numerical framework to account for defects in steel–concrete structures. The thesis will be structured in several stages: validation of a modeling strategy for the mechanical behavior of defect-free SC structures, introduction of defects in the simulations and assessment of the applicability of the numerical approach, development of a metamodel and sensitivity analysis, and identification of critical defect configurations through optimization algorithms. One of the operational objectives of this doctoral work is to provide a tool capable of identifying critical defect configurations (size, position, and number) with respect to a given target quantity of interest (such as loss of strength or reduction in average stiffness). The research will therefore rely on the use and further development of state-of-the-art numerical tools in the fields of finite element modeling, optimization techniques, sensitivity analysis, and metamodeling. The thesis will be carried out within a rich collaborative environment, notably in partnership with EDF.

Effects of structural heterogeneities on air flow through reinforced concrete walls

The containment building represents the third barrier to confinement in nuclear power plants. Its role is to protect the environment in the event of a hypothetical accident by limiting releases to the outside. Its function is therefore closely linked to its tightness. Traditionally, the estimation of the leakage rate is based on a sound knowledge of transfer properties (such as permeability), combined with a chained (thermo-)hydro-mechanical simulation approach. While the mechanical behavior of the structure is now broadly well understood, progress is still needed in the comprehension and quantification of fluid flow. This is particularly true in the presence of heterogeneities (cracks, honeycombs, construction joints, reinforcements, cables, etc.), which represent situations that can locally disturb permeability. This is the context of the present PhD topic.
The work will consist, through a methodology combining experimental testing and numerical simulation, in improving the representation of fluid flow by explicitly accounting for the impact of heterogeneities. An initial analysis will define an experimental plan, which will then be carried out. The results will be analyzed in order to empirically characterize the influence of each type of heterogeneity tested on transfer properties. A simulation approach, exploiting the experimental findings, will then be developed using finite element and discrete methods. Finally, the applicability of the methodology to a real-scale structure will be assessed, while explicitly accounting for uncertainties regarding the presence and impact of such heterogeneities (probabilistic approach).The PhD will therefore rely on state-of-the-art experimental and numerical tools and methods, and will be conducted in a rich collaborative context (CEA, ASNR, EDF).

Study of plutonium oxalate formation mechanisms – Application to molten salt reactors

Molten salt reactors (MSRs) offer a promising alternative for sustainable nuclear energy production, thanks to their intrinsic safety and their ability to close the nuclear fuel cycle, notably through the use of a fast neutron spectrum. This type of reactor can use liquid chloride salts containing plutonium and other actinides as fuel. As part of the development of this nuclear pathway, the CEA supports the development of a PuCl3 production process. The synthesis of this chloride has already been carried out at small scale at the CEA and elsewhere in the world. Several starting materials can be used for the synthesis of the trichloride, notably plutonium metal, plutonium oxide and plutonium oxalate. The most industrially promising synthesis route is the oxalate route, because it can be transferred to the equipment already present at the La Hague site. This process consists of converting the oxalate into plutonium chloride via a gas–solid reaction with a chlorinating agent, such as HCl for example. However, the reaction mechanism and the decomposition of the oxalate in a chlorinated environment are still poorly understood. A detailed understanding of this transformation would make it possible to optimize operating conditions and facilitate the scale-up of this synthesis. The topic will initially focus on determining the reaction mechanism of Ce oxalate (a surrogate for Pu) to the chloride. Small-scale studies will be performed to identify the various reaction intermediates using analytical techniques such as X-ray diffraction (XRD), thermogravimetric analysis / differential thermal analysis (TGA/DTA) and analysis of the gases produced during the reaction. The kinetics as well as the enthalpy changes will also be studied in order to obtain key data for modelling a large-scale process. Subsequently, an optimization of the PuCl3 synthesis at the scale of a few tens of grams will be carried out. These studies will first be conducted under non-radioactive conditions on a surrogate to validate the experimental approach, before being transposed to radioactive conditions.

Effects of alpha decay on the alteration of nuclear glasses: simulation, understanding, and consideration in geochemical models

This Ph-D at the CEA on the alteration of nuclear glass is central to the challenges of sustainable radioactive waste management. The doctoral student will acquire expertise in materials and modeling, paving the way for exciting careers in research, engineering, or the nuclear industry. In deep geological storage, contact with groundwater can cause glass alteration, which is the main source of radionuclide release. The CEA is developing a multi-scale model that needs to be adapted to take into account the effects of glass self-irradiation. The aim of the thesis is to identify the mechanisms modified by irradiation and to parameterize the model. The doctoral student will conduct controlled irradiation experiments on non-radioactive glasses and compare them to ²44Cm-doped active glass. The structural and physicochemical changes induced will be characterized using various techniques (Raman, IR, NMR, SEM, TEM, DSC, etc.). Targeted alteration tests will be used to observe the impact of the level of damage on the kinetics of alteration. The results will be used to adjust and validate the predictive model under conditions representative of geological storage. The work will be carried out both in an active environment (shielded cells) and in an inactive laboratory. An M2 internship is available on the same subject. Profile: M2 or materials engineer, physical chemistry.

Optimization of the conditions for the electrolytic synthesis of metallic uranium

Reprocessed uranium (RepU), derived from the reprocessing of spent nuclear fuel, represents a material whose reuse in power plants would allow for the sustainable management of energy resources. Accordingly, the CEA is supporting the nuclear industry to evaluate the feasibility of enriching this RU via the laser route. This technology requires, as a process input, uranium in the form of a metallic alloy. Consequently, an upstream process for the synthesis of metallic uranium must be developed and optimized to build a sovereign RepU sector.
One of the routes under study for synthesizing metallic uranium is the electrolysis of uranium oxide, previously dissolved in high-temperature molten fluoride salt media. This synthesis, which was previously implemented in the United States using the aluminum synthesis process, now requires a re-appropriation and optimization of experimental conditions.
In a first phase, the PhD student will conduct a systematic study of the electrolyte, in order to understand the influence of key parameters—salt composition, temperature range, redox environment, material compatibility, and oxide solubility—on the behavior of the electrolysis bath. For each parameter, targeted tests will be conducted: thermochemical characterization of the salt (melting point, volatility, purification, etc.), evaluations of the kinetics and the solubility limit of uranium oxide in the bath (a crucial point of the process), electrochemical tests aimed at identifying redox systems of interest, as well as studies on the resistance of materials when in contact with the molten salt and liquid metal. All of these investigations will make it possible to define the optimal experimental conditions for the controlled implementation of metal synthesis by oxide electrolysis.
In a second phase, once these conditions are established, the work will focus on the formation of the metal at the electrode, its recovery, and its characterization. The quantity and quality of the metal produced after electrolysis will be the major criteria for validating the selected experimental parameters.
All acquired data will be utilized for the design of pilot and industrial scale electrolyzers, and will feed into future digital models that will be developed. The results obtained may be the subject of presentations at international conferences and publications.
These studies will be carried out at the laboratory scale using active material, with work phases on simulants to grasp the implementation of the process and scaling up. The host laboratory, which operates in both these environments, specializes in the implementation of thermal processes and pyrochemical tests.
The candidate should ideally have a Master 2 or engineering school degree in chemistry or physics.
At the end of this thesis work, the PhD student will have acquired expertise in experimental techniques related to metallic synthesis by electrolysis, from the design of electrochemical devices to the multi-scale characterization of materials. Furthermore, their involvement in a sovereign project focused on strategic metals will open up numerous employment prospects in academic research or industrial R&D, both in the nuclear sector and in other fields of chemistry and materials.

Impact of fission products and microstructure on the thermophysical properties of LWR (U,Pu)O2-x fuel

In France, mixed oxide fuel (MOX, (U,Pu)O2) is currently deployed in several pressurized water reactors (PWRs) operated by EDF. To ensure continued low-carbon electricity production, a broader use of MOX fuel across the French nuclear fleet is expected to become essential in the near future. During reactor operation, U1??Pu?O2?? fuels undergo significant changes in their physical properties and microstructure, primarily due to the accumulation of dozens of lighter elements generated by plutonium’s fission, commonly referred to as fission products (FPs). Because of the high radiotoxicity of irradiated fuel, surrogate materials known as SIMMOX have been developed. In a previous PhD project, we established a synthesis route enabling the production of SIMMOX doped with up to twelve fission products, successfully reproducing the microstructure of irradiated PWR MOX fuel.
To maintain an adequate margin to fuel melting during irradiation, it is crucial to understand how the thermophysical and thermodynamic properties of MOX fuel evolve under these conditions. This PhD project aims to measure these properties on a representative MOX composition currently used in EDF reactors. The key properties of interest include thermal conductivity, heat capacity, and melting temperature. These measurements will be carried out at the JRC-Karlsruhe (Germany) during a research stay of approximately 12 months. Subsequently, the samples will be returned to CEA-Marcoule, where the impact of high-temperature exposure on actinide and fission product speciation, as well as on the microstructural evolution of the MOX fuel, will be investigated. In parallel, the experimental work will be complemented by thermodynamic modeling using the CALPHAD approach, in order to identify the mechanisms and phase equilibria governing high-temperature behavior during property measurements.

Modelling of Thermo-Fluid Phenomena in the Plasma Nozzle of the ELIPSE Process

The ELIPSE process (Elimination of Liquids by Plasma Under Water) is an innovative technology dedicated to the mineralization of organic effluents. It is based on the generation of a thermal plasma fully immersed in a water-filled reactor vessel, enabling extremely high temperatures and reactive conditions that promote the complete decomposition of organic compounds.
The proposed PhD research aims to develop a multiphysics numerical model describing the behavior of the process, particularly within the plasma nozzle, a key zone where the high-temperature gas jet from the torch interacts with the injected liquids.
The approach will rely on coupled thermo-aerodynamic modeling, integrating fluid dynamics, heat transfer, phase change phenomena, and turbulence effects. Using Computational Fluid Dynamics (CFD) tools, the study will characterize plasma–liquid interaction mechanisms and optimize the geometry and operating conditions of the process. This modeling will be compared and validated against complementary experimental data obtained from the ELIPSE setup, providing the necessary input for model calibration and validation.
This work will build upon previous research that has led to the development of thermal and hydraulic models of both the plasma torch and the reactor vessel. Integrating the new model within this framework will yield a comprehensive and coherent representation of the ELIPSE process. Such an approach represents a decisive step toward process optimization and industrial scale-up.
The ideal candidate will be a Master’s or final-year engineering student with a background in process engineering and/or numerical simulation, demonstrating a strong interest in physical modeling and computational approaches.
During this PhD, the candidate will develop and strengthen skills in multiphysics numerical modeling, advanced CFD simulation, and thermo-aerodynamic analysis of complex processes. They will also acquire solid experience in waste treatment, a rapidly expanding field with significant industrial and environmental relevance. These skills will provide strong career opportunities in applied research, process engineering, energy, and environmental sectors.

Influence of battery system disassemblability on their environmental impacts

With the rise of electric mobility and Energy storage, the demand for batteries is rapidely increasing. But this growth raises a crucial question: how can we design batteries that are both high-performing, durable, and more environmentaly friendly ?
Without focusing on cell Chemistry, one promising approach lies in disassembly-oriented designs: making battery packs easier to disassemble could facilitate their repair, reuse, or recycling. However, a more easily dismantled design may also increase its mass or reduce the system's reliability, potentially affecting its overall lifetime.
This PhD aims to tackle this challenge by developing an analytical method to link the design of dismountable battery systems with their actual environmental impacts, while explicitly accounting for reliability aspects.
The PhD candidate will assess the ease of disassembly of different battery systems, quantify the environmental gains and losses compared to conventional designs, and help develop a decision-support tool to guide design choices. The proposed research will involve, among other tasks, Life Cycle Assessment (LCA) modelling coupled with battery performance and ageing models, as well as failure probabilities analysis.
This project takes place in a technological context driven by the growing need for resource circularity, the automation of disassembly processes, and the implementation of new European regulations on batteries. If offers a unique opportunity to contribute to the design of the next generation of sustainable battery systems.

Simulation of flow in centrifugal extractors: the impact of viscous solvents on operation

Within the framework of nuclear spent fuel reprocessing, the CEA co-developed with ROUSSELET-ROBATEL liquid/liquid extraction (ELL) devices aimed at bringing two immiscible liquids into contact, one of which contains the valuable metals to be recovered and the other an extractant molecule. The multi-stage Centrifugal Extractor is one of the devices used to perform ELL at the La Hague plant. The future use of solvents potentially more viscous than current industrial standards may pose performance issues that need to be studied in advance in the laboratory to provide the necessary recommendations to restore the expected performance levels for the plant. The nuclear environment in which these devices operate makes in situ studies nearly impossible, thus depriving R&D of valuable information that is nevertheless essential for a deep understanding of the physicochemical mechanisms at the heart of the issues involved. To address this, the proposed study will rely on a numerical approach that will have been previously validated by comparison with either historical experimental data or data acquired from more recent ad hoc pilot systems. Thus, following a phase of literature review and capitalization of recent measurements, it is proposed to first create test cases that will be used to validate the numerical models. Based on this validation and in light of the knowledge acquired from previous theses concerning the effect of viscosity on flows, it is proposed to numerically explore the impact of an increase in solvent viscosity on centrifugal extractors. This will pave the way for a better understanding of the operation of the devices as well as operational or geometric improvements. The student will work at CEA Marcoule, in a research environment at the crossroads between a team of experimentalists and a team of numerical simulators. This experience will enable the student to acquire important skills in modeling liquid-liquid flows as well as solid knowledge on the development of liquid-liquid contactors.

Investigation of geopolymer durbility for radioactive wastewater treatment

The reprocessing of spent nuclear fuel generates radioactive effluents that require appropriate treatment. To meet industrial and regulatory challenges, the CEA is developing geopolymer-based adsorbent materials that are robust, cost-effective, and efficient for capturing Cs-137 and Sr-90. Their performance can be enhanced through the incorporation of selective adsorbents (such as zeolites) and through innovative shaping processes (3D printing, beads, foams) optimized for column adsorption.

The durability of these materials remains a critical issue, as their leaching and ageing mechanisms in column systems are still poorly understood. This PhD project will focus on studying these phenomena in order to assess the impact of effluent chemistry on the stability and efficiency of geopolymers. The work will include material synthesis, batch and column sorption tests, and the use of modelling tools to interpret alteration mechanisms. The scientific challenge is to identify the key physicochemical markers of geopolymer degradation in the targeted liquid effluents and to link them with column sorption performance.

The PhD candidate will join the Laboratory for Supercritical Processes and Decontamination (LPSD), renowned for its expertise in column-based ion extraction and adsorbent characterization. He/she will collaborate with specialists at CEA Marcoule and with the laboratory teams, and will regularly present project progress to the industrial partner. Upon completion of the PhD, the candidate will have developed recognized expertise at the interface of materials science, chemistry, and column adsorption processes. This work will open a wide range of opportunities: R&D positions in the nuclear sector, waste management, and functional materials; academic pathways (postdoctoral research, academia, teaching); or contributions to major energy and environmental challenges.

Top