Dynamics of a very high temperature heat pump coupled to a thermal storage system. Experimental and numerical study.

In the context of an electricity mix with a high proportion of intermittent renewable energy sources, massive energy storage solutions will be of major interest. For the vast majority of these solutions, electricity is converted into energy that can be stored on a large scale (e.g. pressure energy, chemical or electrochemical energy, etc.), then converted back into electricity. Losses occur during each of these stages (conversion, storage), so the efficiency of the complete system is an important issue and requires a good understanding of each conversion and storage stage.
The innovative system that we want to study is a Carnot battery, i.e. a thermal battery associated with thermodynamic conversion cycles (electrical energy to thermal energy to electrical energy). The anticipated advantages are numerous: the possibility of integrating thermal flows, the absence of geographical constraints, a degree of freedom in the choice of temperatures and storage materials, the use of alternators for inertia, etc. The identified challenges are reactivity and overall efficiency.
The research will focus on the charging cycle (very high temperature heat pump) and its coupling with thermal storage, initially from a static and then a dynamic perspective. Unsteady numerical modelling will be developed and used to design the Carnot battery system. Tests carried out on an experimental installation at the CEA will be used to validate and enhance the modelling results.

Development of Single-Ion Eutectogel Electrolytes through Polymerization of Deep Eutectic Solvents (DES)

The proposed PhD thesis focuses on the development of innovative polymer electrolytes for next-generation batteries, aimed at improving the safety and performance of energy storage systems.

Polymer electrolytes represent a promising solution to replace traditional liquid electrolytes. However, their development is limited by challenges related to ionic conductivity and low ion transport numbers. The addition of Deep Eutectic Solvents (DES) into the polymer matrix enhances ionic conductivity. Furthermore, the "single-ion" approach, based on grafting the counter-ion onto the polymer chain, leads to unipolar conduction.

CEA has recently developed "single-ion eutectogel" electrolytes, obtained by polymerizing a DES composed of a single-ion monomer and a hydrogen bond donor (HBD). These electrolytes exhibit very promising performance, achieving unipolar ionic conductivities greater than 0.1 mS/cm at room temperature. However, it is essential to further explore the relationships between formulation, structure, and properties, as well as the conduction mechanisms within these materials, in order to continue their development.

The thesis will be structured in three main phases:

Study of the reference system: Establish a research methodology to link polymerizable formulations, polymer structure, and their electrochemical properties. This will include the study of the starting DES and the electrolyte resulting from its polymerization. The study of conduction mechanisms within these electrolytes will be a central focus of this phase.

Optimization of properties: Based on the results from the previous phase, optimize the properties of the electrolytes through formulation work to select the most promising electrolyte for the next phase.

Integration into a complete system: Explore the integration of the electrolyte into a battery cell, using the in situ polymerization process to synthesize the electrolyte directly within the cell.

Physicochemical techniques (NMR, DSC, TGA, FTIR, RAMAN, SEC, SAXS, ...) and electrochemical techniques (EIS, CV, GCPL, ...) will be used throughout the project.

The PhD will be carried out in collaboration with CEA and LEPMI, providing access to state-of-the-art infrastructures and recognized expertise in formulation, polymer chemistry, and polymer electrolyte electrochemistry.

Relationship between the nature of hard carbons and the properties of electrodes for Na-ion batteries

Hard carbons are the most commonly used negative electrode materials in Na-ion batteries. Their capacity exceeding 300 mAh/g, low operating voltage, long lifespan, and power performance make them the best option for commercializing Na-ion batteries. However, several challenges remain to approach the performance of low-impact Li-ion technologies like LF(M)P/graphite. One major limitation is their low volumetric density. Their disordered nature and resulting microporosity lead to a lower skeletal density compared to graphite. This significantly affects both the volumetric and gravimetric energy densities due to the difficulty of compressing the electrodes.

The main objective of this thesis is to establish a link between the material's skeletal density and the electrode's calendering capability to reduce its porosity. First, we will evaluate the relationship between the structure, morphology, and surface state of hard carbon and the electrode's density. We will attempt to understand the impact of calendering on the material’s properties. Then, we will assess the tortuosity and conductivity of hard carbon electrodes to predict their performance. Finally, we will work on improving and optimizing the electrodes in terms of energy densities, focusing particularly on electrode formulations.

Study of rheological phenomena occurring during thermal treatment for waste encapsulation into a glassy matrix

Operations of decontamination and dismantling generate highly diverse waste in terms of chemical composition and physical form. It can take the form of solid deposits, powders, sludges or liquid solutions. To condition them, encapsulation with a glassy binder seems promising because of its lower working temperature than conventional vitrification processes.
The process involves heating mixtures of waste and vitreous adjuvant between 800 and 1200°C, which requires a deep understanding of the rheological behavior of the system at temperature. Three research directions will be explored during the thesis: the influence of waste loading and nature of the adjuvant on the flow behavior, the behavior of volatile species in mixtures made of wet waste and adjuvant, and the impact of potential reactivity between the waste and the adjuvant on the system properties.
Final objective will be, on one hand, to optimize the container filling rate while maximizing the waste loading rate, on the other hand, to guide the choice of the most suitable vitreous adjuvant.

The PhD student will benefit from the recognized skills of the host laboratory in the field of rheology of complex systems from low temperature (slurries, bitumens, cements) to high temperature (homogeneous and crystallized glass melts), and from all the characterization resources required for the successful completion of the thesis. The entire thesis will be carried out in a non-nuclear environment, using inactive simulants.
The candidate must have skills in the following fields: rheology, material science, glass, thermics, teamwork and experimentation. All the cross-disciplinary skills acquired during this PhD could finally be put to good use in a wide range of sectors involving the rheology of complex systems.

Modelling/Simulation of the synthesis of anti-corrosion coatings using the MOCVD process for low-carbon energy production

The durability of materials used in many areas of energy production is limited by their degradation in the operating environment, which is often oxidising and at high temperature. This is particularly true of High Temperature Electrolysers (HTE) for the production of ‘green’ hydrogen, or the fuel cladding used in nuclear reactors to produce electricity. Anti-corrosion coatings can/should be applied to improve the lifespan of these installations, thereby conserving resources. A process for synthesising coatings using a reactive vapour route with liquid organometallic precursors (DLI - MOCVD) appears to be a very promising process.
The aim of this thesis is to model and simulate the DLI-MOCVD coating synthesis process for the two applications proposed above. Simulation results (deposition rate, deposit composition, spatial homogeneity) will be compared with experimental results from large-scale ‘pilot’ reactors at the CEA in order to optimise the model's input parameters. On the basis of this CFD simulation/experiments dialogue, the optimum conditions for deposition on a scale 1 component will be proposed. A coupling between CFD simulations and Machine Learning will be developed to accelerate the change of scale and the optimisation of scale 1 deposits.

Implicit/explicit transition for numerical simulation of Fluid-Structure Interaction problems treated by immersed boundary techniques

In many industrial sectors, rapid transient phenomena are involved in accident scenarios. An example in the nuclear industry is the Loss of Primary Coolant Accident, in which an expansion wave propagates through the primary circuit of a Pressurized Water Reactor, potentially vaporizing the primary fluid and causing structural damage. Nowadays, the simulation of these fast transient phenomena relies mainly on "explicit" time integration algorithms, as they enable robust and efficient treatment of these problems, which are generally highly non-linear. Unfortunately, because of the stability constraints imposed on time steps, these approaches struggle to calculate steady-state regimes. Faced with this difficulty, in many cases, the kinematic quantities and internal stresses of the steady state of the system under consideration at the time of occurrence of the simulated transient phenomenon are neglected.

Furthermore, the applications in question involve solid structures interacting with the fluid, undergoing large-scale deformation and possibly fragmenting. A immersed boundary technique known as MBM (Mediating Body Method [1]) recently developed at the CEA enables structures with complex geometries and/or undergoing large deformations to be processed efficiently and robustly. However, this coupling between fluid and solid structure has only been considered in the context of "fast" transient phenomena treated by "explicit" time integrators.

The final objective of the proposed thesis is to carry out a nominal regime calculation followed by a transient calculation in a context of fluid/immersed-structure interaction. The transient phase of the calculation is necessarily based on "explicit" time integration and involves the MBM fluid/structure interaction technique. In order to minimize numerical disturbances during the transition between nominal and transient regimes, the calculation of the nominal regime should be based on the same numerical model as the transient calculation, and therefore also rely on an adaptation of the MBM method.

Recent work defined an efficient and robust strategy for calculating steady states for compressible flows, based on "implicit" time integration. However, although generic, this approach has so far only been tested in the case of perfect gases, and in the absence of viscosity.

On the basis of this initial work, the main technical challenges of this thesis are 1) to validate and possibly adapt the methodology for more complex fluids (in particular water), 2) to introduce and adapt the MBM method for fluid-structure interaction in this steady-state calculation strategy, 3) to introduce fluid viscosity, in particular within the framework of the MBM method initially developed for non-viscous fluids. At the end of this work, implicit/explicit transition demonstration calculations with fluid-structure interaction will be implemented and analyzed.

An internship can be arranged in preparation for thesis work, depending on the candidate's wishes.

[1] Jamond, O., & Beccantini, A. (2019). An embedded boundary method for an inviscid compressible flow coupled to deformable thin structures: The mediating body method. International Journal for Numerical Methods in Engineering, 119(5), 305-333.

Improving phase field damage models - Application to vitroceramic materials subjected to self-irradiation

The vitrification of nuclear waste is a solution currently adopted for the storage of nuclear waste. The vitroceramic materials considered for this application consist of a glass matrix and inclusions of crystalline phases. Rich in radioactive elements, these inclusions undergo self-irradiation resulting in their swelling, which may cause cracking of the glass matrix. It is necessary to know the maximum amount of inclusions below which the material does not crack. An experimental study on radioactive materials, produced and monitored over time, is excessively expensive and the development of a numerical approach could make it possible to better target the materials to be studied.
Following Gérald Feugueur's thesis work on the subject, which highlighted the difficulty of current models in dissociating crack initiation and propagation, the main goal is to develop and test an improved phase field model incorporating an elasticity-independent crack nucleation criterion, based on regularized models of softening plasticity. The model will be implemented using the finite element method (FEniCS code) and an alternative method using Fourier transforms (AMITEX code). Following cross-validation, the most efficient implementation will be selected for application to large-scale 3D microstructures. Close exchanges with CEA Marcoule will enable us to characterize the microstructure of the materials, and an experiment currently underway should enable us to analyze the potential cracking of these materials under self-irradiation.

Compréhension et modélisation du transport des gaz dans un combustible UO2 présentant plusieurs familles de porosités

Sans objet (candidats français uniquement pour cette thèse)

Development of highly reactive bio-based polyhydroxyurethanes for the substitution of isocyanates in polyurethanes

Polyurethanes are thermosetting materials with significant environmental impacts. They are primarily synthesized from isocyanates, which are highly hazardous substances (toxic, sensitizing, and some even classified as CMR - Carcinogenic, Mutagenic, or Reprotoxic) and are subject to REACH restrictions. In this context, polyhydroxyurethanes (PHUs) offer several advantages: (i) they are more easily bio-based compared to conventional PUs, (ii) their synthesis does not involve isocyanates, but (iii) instead allows for CO2 sequestration. However, the precursors used in the synthesis of PHUs (cyclic carbonates and amines) exhibit much lower reactivity than isocyanates, resulting in curing times that are currently incompatible with the temperatures and production rates required for this type of material.
Several research directions have been proposed to optimize PHU curing kinetics, focusing on the identification of (i) new cyclic carbonate and amine precursors chemically substituted at the a or ß positions of the reactive group, and (ii) new high-performance catalysts capable of activating both types of precursors used in synthesis.
In this context, the PhD candidate will be tasked with synthesizing new cyclic carbonate and amine precursors and studying their reactivity to identify the most favorable conditions for the synthesis of highly reactive PHUs. The results obtained during this work will then be analyzed using symbolic Artificial Intelligence models developed at CEA.
This PhD project is part of the PHURIOUS project, funded by the PEPR DIADEM program, which aims to integrate high-throughput synthesis and characterization techniques in polymer chemistry with digital tools, including DFT calculations, molecular dynamics simulations AI approaches.

Development of a multi-criteria comparison tool for electrochemical stationary storage systems

Use of stationary storage systems is now essential to keep pace with changes in the electricity grid and the growing integration of intermittent renewable energies such as solar and wind power. The choice of a storage solution is based on a number of criteria, including performance, lifetime, environmental impact, safety, regulatory constraints and, of course, economics.
The laboratory possesses comparative data on these different criteria, via experimental studies and feedback on existing systems. In addition, an initial software tool has been developed to assess environmental impact using LCA (Life Cycle Assessment). The aim of this thesis work is to integrate these different components into a broader comparison tool with a multi-criteria approach, targeting specific case studies and a limited number of storage technologies that have reached sufficient maturity for the available data to be reliable.

Top