Development of a predictive power model for a photovoltaic device under spatial constraints

CEA is developing new cell and module architectures and simulation tools to assess the electrical performance of photovoltaic (PV) systems in their operating environment. One of these models, called CTMod (Cell To Module), takes into account not only the different materials making up the module, but also the different cell architectures. For space applications, the community wants to use terrestrial silicon-based technologies that can be integrated on flexible PVAs (Photovoltaic Assembly). The space environment imposes severe constraints. A relevant evaluation of performance at the start and end of a mission is therefore essential for their dimensioning.
The aim of this thesis is to correlate physical models of radiation-matter degradation in space with electrical models of photovoltaic cells. Performance degradations linked to the various electron, proton and ultraviolet (UV) irradiations of the space environment will be evaluated and validated experimentally. Linked to the CTMod Model, this new approach, never seen in the literature, will able to get a more accurate understanding of interactions between radiations and PVAs. These degradations result from non-ionizing energy deposition phenomena, quantified by the defect dose per displacement, and ionizing ones quantified by the total ionizing dose for protons and electrons. In the case of UV, the excitation of electrons in matter generates chain breaks in organic materials and colored centers in inorganic materials. Initially, the solar cell used in the model will be a Silicon cell, but the model can be extended to include other types of solar cell under development, such as perovskite-based cells.

Multiphe hydrogen injection at anode side of PEMFC

The alternating feeding architecture (known as Ping-Pong) was developed by the CEA. This architecture emerged in 2013 and has been implemented in several fuel cell systems. Following the latest tests on this architecture, questions remained unanswered. First, it is a question of understanding how species (hydrogen, nitrogen, liquid and gaseous water) move in cells operating with alternating feeding. Control laws influences these movements, it will be necessary to identify the levers to make the most out of it and then to propose methods to promote the evacuation of water and nitrogen while avoiding the evacuation of hydrogen.

The thesis work will aim to optimize the anode architecture with alternating feeding and to bring this architecture to maturity. The key points are the search for an optimum control of this architecture, the achievement of a hydrogen rejection rate of less than 1%. Finally, this optimization will also have to maximize the durability of the stack.

The doctoral student will have to model the movements of species at different time scales (10ms to 10 minutes), understand the mechanisms, adapt the control laws and validate the new control laws on a test bench.
This work will identify solutions to efficiently evacuate liquid water and nitrogen and minimize H2 rejection and then obtain superior performance compared to conventional architectures.

Dynamic clamping of hygrogen fuel cells: experimental and numerical simulation approach

The impact of the clamping of PEMFC stacks has been demonstrated by the publication of numerous experimental measurements. Passive clamping systems were developped to garantee the minimum elasticity necessary notably during temperature changes or to improve the stress distribution. The new components are finer and finer presenting a reduced elasticity range, moreover latest publications demonstrate the impact of clamping on the deformation and performance of few microns thick active layers and it should be a major improvement to integrate an accurate dynamic clamping.
The first aim of the phD is to study experimetally the impact of the dynamic control of the clamping on the performances of stacks. These tests will be performed with stacks integrating either stamped metallic bipolar plates: the reference technology, or printed cells: the new technology in development at CEA. In parallel, the candidate will learn the model, actually under development thanks to a phD, simulating stresses and deformations, and the associated multiphysic parameters such as porosity or electric resistance, in function of clamping.
Thanks to the synthesis of these experimental and numerical results the candidate will improve the undertanding of the impact of the clamping and will propose solutions to improve notably the durability which is a critical point for our ongoing european or industrial projects.
In function of the phD progress, vibratory tests could be performed to evaluate the potential input of mechanical spectroscopy, notably for diagnosis.

Numerical aand experimental study of nuclear fuel cracking and oxyde-cladding delamination

Sans objet.

For high-performance, safe, and long-lasting batteries: understanding the role of an additive in liquid electrolytes

The trade-off between performance, aging, and safety remains a major challenge for Li-ion batteries [1]. Indeed, the incorporation of certain additives into the 3rd-generation electrolyte aims to delay or reduce the consequences of thermal runaway, thus reducing the risk of fire or explosion. However, this approach can have negative effects on other key parameters, such as ionic conductivity [2,3]. Therefore, this thesis proposes to study the coupled effects of these additives in order to better understand and potentially predict their impact on each of these indicators.

At the beginning of this work, an additive will be selected to study its role in an NMC 811/Gr-Si chemistry and a 3rd-generation liquid electrolyte, in terms of performance, long-term stability, and safety. The additive will be chosen based on the state of the art and post-mortem analysis of commercial cells representative of the current market. In parallel, new commercial cells of a few Ah will be used. These will be equipped with a reference electrode, internal temperature measurement, and ionic conductivity monitoring. The cells will then be activated with the selected electrolyte at different additive concentrations. Electrochemical performance, along with chemical and morphological characterization of the materials present, will be studied. Key safety parameters (thermal stability, release of reducing gases, O2, released energy, flammability of the electrolyte) for these new cells will be measured at different additive concentrations. The internal instrumentation, including the reference electrode, will also be used innovatively to study the onset of thermal runaway under these conditions.

A full aging campaign will be conducted over a maximum period of one year. At regular intervals, a sample of cells will be studied to characterize the impact of aging on chemical, electrochemical, and morphological changes, as well as on key safety parameters. The most important mechanisms, along with simplified laws governing safety as a function of additive quantity and aging, will be proposed.

[1] Batteries Open Access Volume 9, Issue 8, August 2023, Article number 427
[2] Journal of Energy Storage 72 (2023) 108493
[3] Energy Storage Materials 65 (2024) 10313

Numerical optimisation of internal safety devices of batterry cells depending on chemistry

Thermal runaway (TR) of a battery pack's elementary accumulator is a key factor that can lead to various safety issues, such as fires or explosions, involving both property and people. Several safety devices can prevent and/or mitigate the consequences of thermal runaway, including the PTC (Positive Temperature Coefficient) to limit short-circuit current, the CID (Current Interrupt Device) to disconnect the external electrical terminals from the internal active elements, and the Safety Vent for cell depressurization. Internal gas pressure is the main triggering factor. However, since the gas quantity strongly depends on the chemistry involved, these safety devices should be optimized for future battery generations.

In this PhD thesis, we will develop a methodology for sizing these safety devices through numerical simulations, incorporating all characterizations from the material scale to abusive cell testing. This research will therefore focus on both numerical and experimental aspects in parallel, in collaboration with other laboratories in our department

In situ 3D visualization and modeling of grain growth during solidification of 316L steel in welding and additive manufacturing processes

CEA is currently carrying out R&D studies to assess the potential of Additive Manufacturing (AM) processes using wire deposition (WAAM and WLAM) for 316L steel, a material used in the manufacture of a large number of components. These processes are similar to the welding techniques currently used in the manufacture and repair of parts for the nuclear industry. Microstructures with a strong crystallographic texture are often obtained after welding or additive manufacturing, leading to highly anisotropic mechanical behaviors, and the prediction of these microstructures is also a key element in ensuring the reliability of non-destructive testing of parts manufactured in this way.

The aim of the thesis, which will be based on a coupled experimental/simulation approach, is to gain a better understanding of the main physical phenomena involved in solidification, in particular grain growth.

To this end, an original approach to characterizing these phenomena will be conducted on the basis of an innovative instrumented test, with the aim of obtaining a high-resolution quasi-3D view of the molten zone during solidification. The results of the experimental approach will enrich the physical models of solidification, already implemented in a 3D CA-FE (Cellular Automaton-Finite Element) model, combining a Cellular Automata (CA) approach and thermal or multiphysics modeling (FE) of the molten bath, to simulate the solidification microstructures resulting from additive manufacturing and welding processes.

Effect of water radiolysis on the hydrogen absorption flux by austenitic stainless steels in the core of a nuclear pressurized water reactor

In pressurized water nuclear reactors, the core components are exposed to both corrosion in the primary medium, pressurized water at around 150 bar and 300°C, and to neutron flux. The stainless steels in the core are damaged by a combination of neutron bombardment and corrosion. In addition, radiolysis of the water can have an impact on the mechanisms and kinetics of corrosion, the reactivity of the medium and, a priori, the mechanisms and kinetics of hydrogen absorption by these materials. This last point, which has not yet been studied, may prove problematic, as hydrogen in solid solution in steel can lead to changes in (and degradation of) the mechanical properties of the steel and induce premature cracking of the part. This highly experimental thesis will focus on the study of the impact of radiolysis phenomena on the corrosion and hydrogen uptake mechanisms of a 316L stainless steel exposed to the primary medium under irradiation. Hydrogen will be traced by deuterium, and neutron irradiation simulated by electron irradiation on particle accelerators. An existing permeation cell will be modified to allow in operando measurement by mass spectrometry of the deuterium permeation flux through a sample exposed to the simulated primary water under radiolysis conditions. The distribution of hydrogen in the material, as well as the nature of the oxide layers formed, will be analysed in detail using state-of-the-art techniques available at the CEA and in partner laboratories. The doctoral student will ultimately be required to (i) identify the mechanisms involved (corrosion and hydrogen entry), (ii) estimate their kinetics and (iii) model the evolution of hydrogen flux in the steel in connection with radiolysis activity.

Study of the influence of the microstructure of a 316L steel produced by the L-PBF process on its mechanical properties: characterization and modeling of creep and fatigue behavior

Research into additive manufacturing for the nuclear industry shows that the production of 316L austenitic steel components using laser powder bed fusion (L-PBF) presents technical challenges, including process control, material properties, qualification and prediction of mechanical behaviour under service conditions. The final properties differ from traditional processes, often exhibiting anisotropy that challenges existing design standards.
These differences are linked to the unique microstructure resulting from the L-PBF process. Controlling the manufacturing chain, from consolidation to qualification, requires an understanding of the interactions between process parameters, microstructure and mechanical properties.
The aim of this thesis is to study the relationships between the microstructure, texture and mechanical properties of 316L steel manufactured by the L-PBF process, under static or cyclic loading. This includes the influence on creep and fatigue properties, and the development of a model to predict mechanical behaviour. Using samples of 316L steel with specific microstructures consolidated by L-PBF, the proposed study aims to establish links between microstructure and mechanical properties to better predict in-service behaviour.

Head-on Reflections of High-Speed Combustion Waves: Experimental and Numerical Investigation and Mitigation Measures.

This thesis focuses on the analysis of hydrogen safety in industries, particularly in cases of accidents where hydrogen is released or generated, such as in nuclear power plants. The interest in hydrogen safety has increased with the use of fuel cells for mobility. In compartmentalized buildings, flammable atmospheres can form, leading to explosions that compromise safety. Flame dynamics are influenced by boundary conditions, especially confined geometries that accelerate the flames. This phenomenon can result in a deflagration-to-detonation transition, causing significant damage to structures through shock waves and combustion waves. Research shows that certain geometric configurations and hydrogen mixtures produce higher pressures, even with low hydrogen concentrations. Three key questions are raised: the influence of geometry on pressure and impulse, the optimal hydrogen concentration, and the possibility of mitigating these effects with sound-absorbing coatings. To answer these questions, experiments and simulations will be conducted to understand and model these phenomena, providing practical tools for safety engineers.

Top