Turbulence synthetization methods in porous media from detailed simulations for multi-scale simulations of nuclear cores
The production of electricity through nuclear energy plays a crucial role in the energy transition due to its low carbon impact. To continuously improve safety and performance, it is essential to develop new knowledge and tools.
The core of a nuclear reactor consists of thousands of fuel rods traversed by a turbulent flow. This flow can cause vibrations, leading to wear. Two flow scales are identified: a local scale, where the fluid interacts with the rods, and a global scale, representing the flow distribution within the core. The local scale requires CFD simulations and fluid-structure coupling, while the global scale can be modeled using averaged approaches, such as porous media simulations.
Coupled fluid-structure interaction (FSI) simulations at the CFD scale are limited to small domains. To overcome this limitation, multi-scale approaches are required, combining large-scale porous media simulations and detailed small-scale CFD simulations. The goal of the thesis is to develop methods for synthesizing turbulence from the results of porous media simulations to improve boundary conditions for CFD simulations. The candidate will first study how existing turbulence models can provide details on turbulent flow at the component scale, and then how to synthesize turbulence for local CFD simulations.
This PhD project is the subject of a collaboration between the IRESNE Institute (CEA) and the ASNR (main execution site of the thesis) in Cadarache. Funding is provided by a MSCA Doctoral Network. The PhD student will be integrated into a network of 17 PhD students. To be eligible, the candidate must have resided no more than 12 months in the last 36 months in France.
Characterisation of reaction pathways leading to thermal runaway for new battery technologies
The development of all-solid-state cells is no longer a mere hypothesis today. As part of the Safelimove project, we assessed the safety of hybrid polymer cells of 1 Ah and 3 Ah, which led to a publication. Additionally, within the Sublime project, we evaluated the safety of 1 Ah sulfide-based cells (argyrodite), and a publication is currently being submitted.
With the arrival of these new cells, it becomes even more crucial to support their development with a detailed safety assessment and the identification of the complex mechanisms involved. Large-scale instruments such as synchrotrons and neutron reactors offer a powerful opportunity to achieve this goal, as they provide the best spatial and temporal resolutions. For example, thanks to fast X-ray radiography at ESRF, it is possible to visualize the inside of a cell during thermal runaway, thereby identifying the local impact of (electro)chemical reactions on the microstructure of components and validating our thermal runaway models. Moreover, with wide-angle X-ray scattering (WAXS), it is possible to monitor in situ the evolution of the crystalline structure of active materials during a very rapid thermal runaway reaction. Indeed, synchrotron radiation allows the acquisition of one diffractogram every 3 milliseconds. The neutron beam at ILL also enables us to track the evolution of lithium metal structure before, during, and after runaway. It is important to emphasize that these three techniques are currently mastered by the LAPS teams and have already led, or will lead, to publications.
Furthermore, new complementary techniques may be explored, such as studying the impact of thermal/mechanical stress on active materials using the BM32 beamline, or evaluating the oxidation states of metals via X-ray absorption spectroscopy (XAS) on ID26.
More conventional laboratory characterizations will also be carried out, such as DSC, TGA-MS, and XRD.
As part of our various collaborations, for the all-solid-state system, the active material of the positive electrode will most likely be NMC, or even LMFP in the event of supply difficulties. The electrolyte used will be sulphide-based, or even halide-based, while the anode will be composed of lithium metal or even a lithium alloy. If time permits, a post-Na-ion system will be considered from the second year onwards. Among other things, the thesis will aim to identify, based on the materials used, whether there are reactions prior to cathode destabilisation, whether the solid electrolyte reacts with the oxygen in the cathode or with the anode material, and whether these parallel reactions contribute to better or worse cell safety.
The three years of the PhD will be structured as follows: the first year will be dedicated to a literature review and the characterization of sulfide technology. Following the first milestones (1st CSI) and the evaluation of ongoing work on sulfides, the second year will focus either on sodium-ion technology or on further development of sulfide technology. Finally, the third year, in addition to the thesis writing, will concentrate more specifically on the impact of the identified materials on safety.
Direct lithium extraction from brine through adsorption
The development of electric vehicles due to climate and the decision to turn towards a greener energy has increased sharply the demand of lithium over the past decade and will continue to escalate. Thus, lithium extraction projects are proliferating worldwide. Since mining presents a quite highly energy-consuming and polluting solution, alternative lithium sources like brine deposits or seawater are being currently investigated. In this study, we will focus on the approach of a direct lithium extraction from brine sources with different concentrations by adsorption. The first step will be to synthesize and characterize a wide range of materials as adsorbents, from classic oxides (LMO, LTO, etc) to functionalized hybrid porous materials (ZIFs, MOFs, etc). It is also intended to shape these materials with the help of an extruder, in order to enhance performances. Then, these materials will be evaluated both in static and dynamic conditions. Various parameters like the concentration of lithium, the presence of other cations and their concentration will be also evaluated and optimized so that we obtain a facile, efficient and selective process. The results of this study will be valorized through the deposit of patents and the submission of scientific articles along the whole duration of the thesis.
Fast charging of lithium-ion batteries : Study of the lithium plating phenomenon using operando NMR
The focus of the thesis is the fast-charging process of lithium-ion batteries and, more specifically, the phenomenon of lithium plating, which will be studied using operando NMR. The target application is electric mobility. The objective of the thesis is to study the dynamics of lithium insertion and lithium metal deposition at the graphite or graphite/silicon-based negative electrode in order to understand the mechanisms leading to plating formation.
Operando NMR is an ideal technique for this study because it offers the unique possibility of simultaneously tracking the signals of the lithiated graphite phases and of deposited lithium during the electrochemical processes. The coupling of electrochemistry and operando NMR will allow us to determine the onset of plating, i.e. the potential of the negative electrode at which deposition begins, and the kinetics of lithium metal deposition and reinsertion at different temperatures and different charging current regimes. We will study Li-ion batteries with a pure graphite negative electrode, but also with graphite-silicon electrodes, in order to investigate the impact of silicon on this phenomenon. The data obtained on the onset mechanisms and the kinetics of lithium metal deposition and reinsertion will be used in a multiphysics model that has already been developed in the laboratory to improve the prediction of plating onset. We will then be able to evaluate the chargeability gains on an NMC 811 // Gr+Si system incorporating optimized electrodes and propose innovative charging protocols.
Mass transfers and hydrodynamic coupling: experimental investigation and models validation and calibration
With the energy transition and the paramount importance of the nuclear energy in this context, it is pivotal to understand the consequences of potential accident with core meltdown, as well as thinking about mitigation strategy.
During a nuclear severe accident with core meltdown a magma called corium can form a pool in the reactor lower head. The pool is not homogeneous and can stratify into multiple immiscible layers. The composition of the pool may evolve in time, due to progressive material assimilation. With the evolution of the global composition of the corium, the properties of the layers evolve. The vertical position of these layer may then change. This change comes with the creation of droplets from a layer which then cross the other one. The vertical order of the different layers as well as their movements have a significant impact on the heat fluxes imposed on the reactor vessel. A better understanding of these phenomena improves safety of both nowadays and future nuclear reactors.
Modelling work has been done, but it lacks validation and need calibration. Prototypical experiments (with actual materials present inside a reactor) are difficult to carry and are not foreseen in the near future. This PhD aims at experimentally studying the mass transfer between a droplet and its surrounding as well as the droplet creation. The planned experimental setup will use a water-based system which allow for local measurement. The goal is to validate, calibrate the existing model, and potentially create new ones. The final goal being to capitalize the work into PROCOR software platform. The experimental setup will be constructed and operated in LEMTA laboratory in University of Lorraine, where the student will work.
The PhD work will be mainly experimental but will also require software use for calibration, validation and for the design of the experimental setup. This work will be conducted in close collaboration between the laboratories LMAG in CEA/IRESNE (Cadarache) and LEMTA in University of Lorraine (Nancy). The student will work in LEMTA, where the experiments will be conducted, while being part of the CEA. The student will benefit from LEMTA’s expertise in building of experimental setup, transport phenomena in fluids and metrology, and from LMAG’s expertise in mass transfer, physical modeling and simulation in the scope of nuclear severe accidents. The student will regularly interact with CEA team which will follow the work closely. The student will therefore have to regularly go to CEA Cadarache.
The PhD student will be integrated to a dynamic environment comprised of researchers and other PhD students. The PhD candidate needs to be knowledgeable in transport phenomena, and needs to have a taste for experimental sciences.
Understanding the effect of doping on the lifespan of advanced Li-ion battery electrode materials
The development of new electrode materials for Li-ion batteries is primarily focused on two often contradictory objectives: increasing the energy density, and thus the range of vehicles, and reducing the cost of batteries. Disordered NaCl-structured materials, such as Li2MnO2F, thanks to the combination of their Mn-rich, low-cost composition and high Li-ion storage capacity, allow these two aspects to be reconciled. Unfortunately, these materials undergo rapid degradation during cycling, which limits their lifespan. It is therefore necessary to address this degradation to make these materials competitive. Recently, our group has developed a strategy for stabilizing the material by modifying its structure, which is the subject of a patent. The goal of this thesis is to deepen this strategy by improving the understanding of the stabilization mechanism by varying its parameters. The PhD student will have access to all synthesis tools to realize these new materials, as well as electrochemical characterization tools on our battery platform to evaluate their performance. The student will also be required to perform in-depth structural characterizations, notably via various X-ray diffraction methods (including synchrotron).
Assisted generation of complex computational kernels in solid mechanics
The behavior laws used in numerical simulations describe the physical characteristics of simulated materials. As our understanding of these materials evolves, the complexity of these laws increases. Integrating these laws is a critical step for the performance and robustness of scientific computations. Therefore, this step can lead to intrusive and complex developments in the code.
Many digital platforms, such as FEniCS, FireDrake, FreeFEM, and Comsol, offer Just-In-Time (JIT) code generation techniques to handle various physics. This JIT approach significantly reduces the time required to implement new simulations, providing great versatility to the user. Additionally, it allows for optimization specific to the cases being treated and facilitates porting to various architectures (CPU or GPU). Finally, this approach hides implementation details; any changes in these details are invisible to the user and absorbed by the code generation layer.
However, these techniques are generally limited to the assembly steps of the linear systems to be solved and do not include the crucial step of integrating behavior laws.
Inspired by the successful experience of the open-source project mgis.fenics [1], this thesis aims to develop a Just-In-Time code generation solution dedicated to the next-generation structural mechanics code Manta [2], developed by CEA. The objective is to enable strong coupling with behavior laws generated by MFront [3], thereby improving the flexibility, performance, and robustness of numerical simulations.
The selected PhD candidate should have a solid background in computational science and a strong interest in numerical simulation and C++ programming. They should be capable of working independently and demonstrate initiative. The doctoral student will benefit from guidance from the developers of MFront and Manta (CEA), as well as the developers of the A-Set code (a collaboration between Mines-Paris Tech, Onera, and Safran). This collaboration within a multidisciplinary team will provide a stimulating and enriching environment for the candidate.
Furthermore, the thesis work will be enhanced by the opportunity to participate in conferences and publish articles in peer-reviewed scientific journals, offering national and international visibility to the thesis results.
The PhD will take place at CEA Cadarache, in south-eastern France, in the Nuclear Fuel Studies Department of the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE)[4]. The host laboratory is the LMPC, whose role is to contribute to the development of the physical components of the PLEIADES digital platform [5], co-developed by CEA and EDF.
[1] https://thelfer.github.io/mgis/web/mgis_fenics.html
[2] MANTA : un code HPC généraliste pour la simulation de problèmes complexes en mécanique. https://hal.science/hal-03688160
[3] https://thelfer.github.io/tfel/web/index.html
[4] https://www.cea.fr/energies/iresne/Pages/Accueil.aspx
[5] PLEIADES: A numerical framework dedicated to the multiphysics and multiscale nuclear fuel behavior simulation https://www.sciencedirect.com/science/article/pii/S0306454924002408
Multiphysic modeling of sintering of nuclear fuel pellet: effect of atmosphere on shrinkage kinetics
Uranium dioxide (UO2) fuels used in nuclear power plants are ceramics, for which solid-phase sintering is a key manufacturing step. The sintering stage involves heat treatment under controlled partial O2 pressure that induces coarsening of UO2 grain and then consolidation and densification of the material. Grain growth induce material densification and macroscopic shrinkage of the pellet. If the green pellet (powder obtained by pressing, manufacturing step before sintering) admit a highly heterogeneous density, this gradient leading to differential shrinkage and the appearance of defects. Furthermore, the sintering atmosphere, i.e., the gas composition in the furnace, impacts grain growth kinetics and thus the shrinkage of the pellet. Advanced simulation is the key to improving understanding of the mechanisms observed as well as optimizing manufacturing cycles.
The PhD thesis aims at developing a Thermo-chemo-mechanical modeling of sintering to simulate the impact of the gas composition and properties on the pellet densification. This scale will enable us to take into account not only the density gradients resulting from pressing, but also the oxygen diffusion kinetics that have a local impact on the densification rate, which in turn impacts the transport process. Therefore, a multiphysics coupling phenomenon has to be modelled and simulated.
This thesis will be conducted within the MISTRAL joint laboratory (Aix-Marseille Université/CNRS/Centrale Marseille CEA-Cadarache IRESNE institute). The PhD student will leverage his results through publications and participation in conferences and will have gained strong skills and expertise in a wide range of academic and industrial sectors.
Potential of magnesium silicate binders for the solidification / stabilization of contaminated soil
Soil contamination by radioactive substances represents a major challenge in terms of public health and environmental protection. Among the various strategies considered for managing such polluted soils, the excavation of contaminated materials offers a pathway to the safe reuse of the site. The excavated soils, when characterized by low to intermediate activity and short-lived radionuclides, must be stabilized prior to disposal. In this context, cementation is widely used due to its moderate cost, ease of implementation, and capacity to confine numerous pollutants. However, its application to soils rich in swelling clays presents two major limitations: poor workability of the fresh material and volumetric instability of the hardened product. To address these issues, this thesis aims to evaluate the potential of magnesium silicate cements as an alternative to conventional calcium silicate cements. These emerging binders are currently attracting growing interest, particularly in the fields of earthen construction and the development of low-carbon materials.
The first objective will be to study the influence of various formulation parameters on the reactivity and properties of magnesium silicate cements. This will be followed by an in-depth investigation of the interactions between the cement phases and the main constituents of contaminated soils. Finally, the long-term durability of the formulated materials will be assessed through leaching tests, which will serve as input for reactive transport modelling, with the aim of gaining a better understanding of the degradation mechanisms and the long-term behaviour of the materials.
This research project is intended for a PhD candidate interested in advancing his/her expertise in materials physical chemistry and contributing to the development of innovative solutions for contaminated soil management and low-impact binder technologies.
Elaboration and durability evaluation of water-permselective multilayer membranes for the CO2 conversion into e-fuels
The catalytic hydrogenation of CO2 into e-fuels is considered to decarbonize certain modes of transport that are difficult to electrify. However, some of the considered reactions are thermodynamically balanced (limited CO2 conversion efficiencies) and catalyst degradation by the produced water is observed. The use of membrane reactors, allowing water separation, is envisaged. For this, the development of water-permselective membranes, without defects and resistant to synthesis conditions, is necessary. Previous studies have targeted LTA and SOD zeolite membranes for this application. However, the presence of defects reduces their selectivity, and their performance deteriorates during operation. The objective of this thesis is therefore to study the sealing of membrane defects and the deposition of protective layers on their surface to improve their performance and durability. To achieve this, the deposition of permselective zeolite layers will first be carried out hydrothermally on suitable porous supports. The sealing of defects by impregnation/conversion of silica precursors in a supercritical CO2 environment will then be studied. Finally, different protective layers (zeolite, ceramic oxide, etc.) will be deposited on the membranes (sol-gel, supercritical CO2, hydrothermal methods). The coatings will be characterized (XRD, SEM, porosimetry, elipsometry, etc.) to ensure their chemical nature, thickness/homogeneity, and porosity. Gas permeation performance will be evaluated at the various stages of preparation, and the durability of the membranes will be studied in the presence of water vapor at different temperatures.
The candidate will work within the Supercritical Processes and Decontamination Laboratory (Marcoule), and will benefit from the laboratory's expertise in ceramic membranes. The student will interact with the laboratory's technicians, engineers, doctoral students and post-doctoral fellows and will exchange with the collaborators of the Reactors and Processes Laboratory (Grenoble). The doctoral student will be involved in the different stages of the project, the publication of results and the presentation of their work at conferences. They will develop solid scientific knowledge in the fields of environment and energy, as well as in project management.