Thermal Barrier Coatings with enhanced mechanical properties performed by plasma spraying
Increasing the performance of aircraft gas turbines requires improvements in the materials used in the combustion chamber and on the parts at the outlet of the chamber. Widely used in the aerospace industry, plasma spraying enables the application of low-conductivity ceramic coatings that provide a thermal barrier protection for metal parts. The mechanical stress observed require coatings that are increasingly resistant in mechanical terms. As a result, the thesis will focus on developing plasma-sprayed thermal barrier coatings with increased mechanical strength while maintaining good thermal insulation compared to the state of the art yttria stabilized zirconia thermal barrier coating currently used in gas turbine engines. For example, particular attention will be paid to toughness, which is the ability of a material to resist fracture in the presence of a crack. Factors that can influence toughness include composition, microstructure, and the addition of reinforcements. The use of original solutions, such as bio-inspired ones, is also a possibility.