Characterizations and modeling of metal tritide aging: application to palladium tritide
Using alternative energy sources such as fusion requires the storage and use of great amount of hydrogen.
This thesis work is about the storage of hydrogen isotopes by palladium hydrides at low equilibrium pressure.
This solid state storage, which ensures both safety and compactness, is particularly interesting for tritium, the radioactive isotope of hydrogen which decay produces helium-3. Helium-3 tends to form nanobubbles which modify the physico-chemical properties of palladium tritide. This phenomenon is called aging. When helium-3 concentration reaches a critical value it is released in the gas phase which can lead to an increase in the storage facility.
In order to better understand and predict the aging phenomenon, material which are aged under tritium during several years are characterized. Studying microstructure, nanobubbles architecture, chemical composition and mechanical behavior evolutions. The acquired data are then used as inputs and outputs of the aging mechanisms modeling.