Deep UV-LEDs based on digital alloys (GaN)n/(AlN)m

Context :
Group-III nitride semiconductors (GaN, AlN, InN) are renowned for their outstanding light emission properties. For more than two decades, they have powered the blue and white LEDs used worldwide, thanks to highly efficient InGaN quantum wells (external quantum efficiency > 80%). In contrast, UV LEDs based on AlGaN quantum wells are still very inefficient (< 10%) and only recently became commercially available. Overcoming this limitation is a key challenge in optoelectronics: achieving efficient deep-UV emission (220–280 nm) would enable high-performance bactericidal applications such as water purification, surface sterilization, and virus inactivation.

Recently, two breakthrough concepts are promising to explore for UV-LEDs:
1. Deep-UV emission from GaN monolayers in AlN: Grow a few atomic monolayers (MLs) of GaN embedded in an AlN matrix. This extreme quantum confinement leads to deep-UV emission down to 220 nm. High emission efficiency is expected due to strong exciton binding, stable even at room temperature
2. Enhanced doping using graded digital GaN/AlN alloys: Use graded digital alloys (GaN)?/(AlN)? where n and m are the number of atomic layers. This architecture enables efficient n- and especially p-type doping, which is a major bottleneck in AlGaN. GaN is much easier to dope than AlN, making this approach very promising for device fabrication.

Scientific Targets :
The aim is to master monolayer growth using MOVPE (metal-organic vapor phase epitaxy), the most industrially relevant technique :
- M2 project: develop the growth of GaN monolayers on AlN substrates, study their deep-UV emission properties, and optimize growth conditions for self-limited single-layer deposition.
- PhD continuation: design and fabricate doped digital GaN/AlN alloys to build the first efficient deep-UV LEDs based on this architecture.

Lab background and collaboration:
The group has long-standing expertise in visible and UV light emission from nitride nanowires. We have already demonstrated 280 nm emission from (GaN)?/(AlGaN)? digital alloys, proving the viability of this approach. The project will be highly experimental (epitaxy, advanced structural and optical characterization) and conducted in close collaboration with Institut Néel for cathodoluminescence analysis and device processing.

Why join this project ?
Gain expertise in epitaxy, semiconductor physics, and optoelectronics. Work in a dynamic, collaborative environment with strong ties to industry. Contribute to the development of the next generation of deep-UV LEDs.

Real-space fitting of flexible molecular structures in high-speed AFM topographic movies

Structural biology seeks to understand the function of macromolecules by determining the precise position of their atoms. Its traditional methods (X-ray crystallography, NMR, electron microscopy), although effective, offer a static view of macromolecules, limiting the study of their dynamics. A new paradigm is emerging: integrative structural biology, combining several techniques to capture, among other things, molecular dynamics. However, despite improvements in femtosecond serial crystallography, molecular dynamics simulations, and cryo-electron tomography, current methods struggle to reach the functional time scale (milliseconds to seconds).
The advent of new scanning probe microscopy, and in particular the recent development of high-speed atomic force microscopy (HS-AFM), allows molecular movements to be observed on the millisecond scale, but lacks the atomic resolution to revolutionize structural biology. The objective of the proposed topic is to further exploit the use of HS-AFM by modeling detailed atomic structures at the heart of the images obtained. The tasks will be both biophysical and computational, involving the improvement of the existing AFM-Assembly tool, which allows direct spatial adjustment of the atomic coordinates of the target molecule under AFM topography. The aim is to apply this protocol to a new type of big data, namely topographical movies obtained by high-speed AFM.
The thesis will be conducted at the Institute of Structural Biology in Grenoble, within the Methods and Electron Microscopy (MEM) group of the Grenoble Interdisciplinary Research Institute (IRIG). It will be carried out in collaboration with the DyNaMo laboratory in Marseille, which specializes in high-speed AFM data acquisition, as part of a joint ANR funding application.
The scientific interest of the project is major for modern integrative structural biology. The great scientific challenge of the coming years in structural biology is the study and analysis of molecular dynamics, in order to move beyond the current paradigm (instantaneous photography) and participate in the emergence of a new paradigm (real-time movie).

A new altermagnetic material with remarkable properties for spintronics

Altermagnets represent a new class of magnetic materials that uniquely combine the advantages of ferromagnets (spin polarization of electric currents) and antiferromagnets (robustness against magnetic fields and ultrafast spin dynamics). As part of an international collaboration, we have experimentally discovered one of the very first and still rare altermagnets, Mn5Si3, thereby opening the way for new fundamental and applied research. Until now, Mn5Si3 has mainly been synthesized by molecular beam epitaxy, a high-precision technique but one that presents limitations for broader studies. Our goal is to develop the growth of Mn5Si3 using high-temperature sputtering, a more versatile and industry-compatible method, in order to explore and demonstrate its exceptional spin properties.

Growth and Characterization of AlScN: A New Promising Material for Piezoelectric and Ferroelectric Devices

III-nitride semiconductors — GaN, AlN, and InN — have revolutionized the lighting market and are rapidly entering the power electronics sector. Currently, new nitride compounds are being explored in the search for novel functionalities. In this context, aluminum scandium nitride (AlScN) has emerged as a particularly promising new member of the nitride family. Incorporating scandium into AlN leads to:

* Enhanced Piezoelectric Constants: Making AlScN highly attractive for the fabrication of piezoelectric generators and high-frequency SAW/BAW filters.
* Increased Spontaneous Polarization: The enhanced polarization can be exploited in designing high-electron-mobility transistors (HEMTs) with very high channel charge densities.
* Ferroelectricity: The recently discovered (2019) emergence of ferroelectric properties opens up possibilities for developing new non-volatile memory devices.

Over the past five years, AlScN has become a major focus of research, presenting numerous open questions and exciting opportunities to explore.

This PhD thesis will focus on the study of the growth and properties of AlScN and GaScN synthesized by molecular beam epitaxy (MBE). The student will receive training in the use of an MBE system for the synthesis of III-nitride semiconductors and in the structural characterization of materials using atomic force microscopy (AFM) and X-ray diffraction (XRD). The variation of the polarization properties of the materials will be investigated by analyzing the photoluminescence of quantum well structures. Finally, the student will be trained in the use of simulation software to model the electronic structure of the samples, aiding in the interpretation of the optical results.

Development of photo-printed interferometric biosensors on multi-core optical fibers for molecular diagnostics

Optical fibers are minimally invasive devices commonly used in medicine for in vivo tissue imaging by endoscopy. However, at present, they only provide images and no molecular information about the tissues observed. The proposed thesis is part of a project aimed at giving optical fibers the ability to perform molecular recognition in order to develop innovative biosensors capable of performing real-time, remote, in situ, and multiplexed molecular analysis. Such a tool could lead to significant advances in the medical field, particularly in the study of brain pathologies, where knowledge of the tumor environment, which is difficult to access using conventional biopsies, is essential.
The proposed approach is based on 2-photon polymerization printing of interferometric structures at the end of each core of a multifiber assembly. The detection principle is based on the interference occurring in these structures and their modification by the adsorption of biological molecules. Each fiber in the assembly will act as an individual sensor, and measuring the intensity of the light reflected at the functionalized end will provide information about the biological interactions occurring on that surface. By modeling the interference phenomenon, we determined parameters to optimize the shape and sensitivity of interferometric structures (PTC InSiBio 2024-2025). These results enabled the printing and characterization of the sensitivity of interferometric structures on single-core fibers. The objectives of the thesis are to continue this optical characterization on new samples and to develop original photochemical functionalization methods in order to graft several biological probes onto the surface of the fiber assemblies. This multi-functionalization will enable multiplexed detection, which is essential for future medical applications. Depending on the progress of the thesis, the biosensors will be validated through the detection of biological targets in increasingly complex environments, up to and including a brain tissue model.

Modeling of a magnonic diode based on spin-wave non-reciprocity in nanowires and nanotubes

This PhD project focuses on the emerging phenomenon of spin wave non-reciprocity in cylindrical magnetic wires, from their fundamental properties, to their exploitation towards realizing magnonic diode based devices. Preliminary experiments conducted in our laboratory SPINTEC on cylindrical wires, with axial magnetization in the core and azimuthal magnetization on the wire surface, revealed a giant non-symmetrical effect (non-symmetrical dispersion curves with different speeds and periods for left- and right-propagating waves), up to an extent of creating a band gap for a given direction of motion, related to the circulation of magnetization (right or left). This particular situation has not been yet described theoretically or modeled, which sets an unexplored and promising ground for this PhD project. To model spin-wave propagation and derive dispersion curves for a given material we plan to use different numerical tools: our in-home 3D finite element micromagnetic software feeLLGood and open source 2D TetraX package dedicated to eigen modes spectra calculations. This work will be conducted in tight collaboration with experimentalists, with a view both to explain experimental results and to guide further experiments and research directions.

Chemical biology approaches to rare earth toxicology in Humans

Recent technological developments have expanded and intensified the use of lanthanides in domains as diverse as renewable energy, computing, and medicine. Increasing usage of these metals raises the question of their impact on the environment and human health. However, the potential toxicity of these metal ions, and its underlying molecular mechanisms, are still little known and rarely investigated in human cell models. The goal of the PhD will be to investigate the human cells response to exposure to Ln ions, and to systematically identify the proteins involved in this response, using a set of chemical and biological tools. In particular, we want to address the following questions: which protein networks are activated or deactivated following Ln exposure? Do Ln ions affect phosphorylation of proteins? Which proteins are directly interacting with Ln ions? will thus decipher what are the key biological interactors of lanthanides, their roles in living systems and the features that enable efficient binding to metals. We expect that our findings will give insights into the toxicology of those elements and inform environmental and occupational safety policies. On the longer term, new bio-inspired strategies for their extraction, recycling, decorporation and remediation will arise from the molecular understanding of metal-life interactions, enabling a well thought-out usage of these elements to support the environmental and numerical transitions.s

Ultra-fast pathogenic bacteria detection in human blood

This project aims to develop a versatile and easy-to-use surface plasmon resonance imaging (SPRi) instrument for the rapid and broad-spectrum detection of low concentrations of pathogenic bacteria in complex samples, particularly blood. SPRi is a label-free technique that allows real-time probing of a sample (regardless of its optical transparency). Due to the high sensitivity of the plasmon phenomenon, the dynamic range of measurable index variation is limited by SPRi detection when reading is performed at a fixed angle, as is the case in commercially available devices. This reduces the use of such optical instruments to the study of environments whose index remains relatively stable during the experiment and whose molecular probes have molecular weights comparable to the targets (monitoring of bimolecular interactions).
This considerably limits the detection of growing bacteria in complex environments. Our laboratory has developed original solutions for the detection of very low levels of contamination in food matrices (creation of a start-up in 2012), but SPRi is unsuitable for the detection of bacteria in blood, partly due to the very high intrinsic variability of this matrix.
These limitations will be overcome by integrating five complementary components:
1. The design of an instrument optimized for real-time recording of SPR images over a defined range of illumination angles;
2. The development of dedicated SPR data analysis and processing to extract the most relevant information for each probe from the images in real time;
3. The functionalization of biochips through a combination of appropriate probes (series of peptides such as antimicrobial peptides (AMPs), antibodies, and even bacteriophages) to optimize the number of possible identifications with a reduced set of probes;
4. The learning of specific “4D-SPRi signatures” of model strains in blood matrices;
5. Validation of the performance of the new “4D-SPRi” instrument as a tool for detecting and characterizing bacteria from hospital strains compared to reference techniques.

Top