Modelling spin shuttling in Si and Ge spin qubits

Silicon and Germanium spin qubits have made outstanding progress in the past few years. In these devices, the elementary information is stored as a coherent superposition of the spin states of an electron or hole confined in a quantum dot embedded in a Si/SiO2 or SiGe heterostructure. These spins can be manipulated electrically and are entangled through exchange interactions, allowing for a variety of one- and two-qubit gates required for quantum computing and simulation. Grenoble is promoting original spin qubit platforms based on Si and Ge, and holds various records in spin lifetimes and spin-photon interactions. At CEA/IRIG, we support the progress of these quantum technologies with state-of-the-art modelling. We are, in particular, developing the TB_Sim code, able to describe very realistic qubit structures down to the atomic scale if needed.
Spin shuttling has emerged recently as a resource for spin manipulation and transport. A carrier and its spin can indeed be moved (shuttled) coherently between quantum dots, allowing for the transport of quantum information on long ranges and for the coupling between distant spins. The shuttling dynamics is however complex owing to the spin-orbit interactions that couple the motion of the carrier to its spin. This calls for a comprehensive understanding of these interactions and of their effects on the evolution and coherence of the spin. The aim of this PhD is to model shuttling between Si/Ge spin qubits using a combination of analytical and numerical (TB_Sim) techniques. The project will address spin manipulation, transport and entanglement in arrays of spin qubits, as well as the response to noise and disorder (decoherence). The PhD candidate will have the opportunity to interact with a lively community of experimentalists working on spin qubits at CEA and CNRS.

Topological superconductivity and Fermi surface in spin-triplet superconductors

Topological superconductivity has become a subject of intense research due to its potential for breakthrough in the field of quantum information. Bulk systems are a promising possibility, with candidates found mainly among unconventional superconductors, which are also strongly correlated electron systems. Today, only a few candidate compounds for topological bulk superconductivity exists, and they are mostly uranium-based heavy fermion superconductors. UTe2 is one of the most prominent candidates. The topological properties of the superconductors depends crucially on the topology of the Fermi surface.
In this project we want to set up a novel technique (for our team) relying on a tunnel diode oscillator circuit. This techniques is very sensitive to quantum oscillations, and to be well both to high magnetic fields and to high-pressure studies. First experiments concentrate on the novel superconductor UTe2, where the Fermi surface is only partly known. In further studies the topological properties of the ferromagnetic superconductors UCoGe and URhGe will be revised.

Antimicrobial coatings

The development of surfaces that limit microbial proliferation is a crucial public health issue. In the context of manned flights to remote destinations such as low Earth orbit, the Moon and possibly Mars, biological contamination represents a significant threat to crew health and the preservation of space equipment. The microflora carried by the crew in enclosed habitats constitutes an unavoidable risk, accentuated by prolonged periods of isolation and dependence on closed environment life support systems. In addition to the risks to astronauts' health, biocontamination is known to damage critical equipment on board spacecraft. Furthermore, micro-organisms exposed to the space environment can develop resistance and mutate, transforming benign microbes into pathogens. To mitigate these risks, effective measures, such as filtration systems and self-decontaminating surfaces that limit bacterial proliferation, need to be put in place. The MATISS experiment (2016-2025), in which the SyMMES and PRISM laboratories were involved, explored the use of hydrophobic coatings to reduce biocontamination on board the ISS, but further improvements are needed, in particular to find alternative solutions to perfluorinated agents and antibiotics, but also applicable to a wide range of materials. Such advances could have a wide range of applications beyond space, including food safety (packaging), implantable materials, drinking water treatment, public transport hygiene, etc. The aim of this collaborative thesis between SyMMES and CEA-Leti in Grenoble is to develop sustainable antimicrobial coatings free from harmful substances, by exploring different functionalization methods, such as the formation of self-assembled monolayers, electropolymerization on conductive materials, and in a highly original way by implementing a new cold atmospheric plasma deposition method, suitable for large surfaces, and above all applicable to a wide range of different materials.

Scaling of cytoskeletal organization in relation to cell size and function

Each cell type, defined by its function and state, is characterized by a specific size range. Indeed, cell size within a specific cell type displays a narrow distribution that can vary from as much as several orders of magnitude between smaller cells, such as red blood cells, and large muscle cells. Interestingly, this size characteristic is essentially maintained during the life cycle of an individual and highly conserved among mammals. Altogether, these features suggest that maintaining “the right size” for a given cell could play an important role in performing its function.
The actin cytoskeleton, that can form different stable while dynamic intracellular architectures, plays a major role in the structural plasticity of cells in response to changes in shape and size. Our recent work suggests that actin networks developed within a cell scale with the actual size and volume of the cell. However, how cells adapt the turnover and organization of their numerous structures assembled from a limiting pool of actin monomers remains to be understood.
In this project, we thus propose to study the organization and dynamics of actin networks in selected cell types displaying distinct sizes. In particular, our study will focus on characterizing the impact of such networks organization/dynamics on different cellular functions such as cell migration or adaptability to environmental cues. The feedback between cytoskeletal architecture dynamics, cell size and function will also be addressed by perturbing the organization and dynamics of the actin cytoskeleton in these cells.

PRObablistic on-edge learning for SPINtronic-based neuromorphic systems

The hired joint UGA – KIT PHD candidate should be able to cover the work of the workpackage 1 and 2. He/she will also participate to technical meetings and have a good understanding on how the tasks of the other technical workpackages are executed, mainly by the partners with internal effort. As a whole, the PHD candidate will develop and optimize compact Computing in Memory architectures, provide high level models for further integration in large scale designs, perform validation of all proofs of concepts of new architectural implementations. He/she will be involved also in the design of algorithmic implementations of Bayesian Neural Networks adapted to the architecture. More in details, he/she will work on the following directions:
Design and optimization of the probabilistic neural networks, will be executed mostly in SPINTEC Laboratory in Grenoble, that will include:
1. full design stack of hardware accelerator without selector transistor for frequent Read and Write operations.
2. Design and validate an innovative architectural approach able to compensate for sneaky paths phenomena.
3. High-level modeling of the full crossbar architecture that includes the stochastic component.
4. Propose a full simulation and validation flow scalable to scaled to realistic architecture size and parameters that implement Bayesian tasks.
5. Perform Delay, power consumption and area overhead figures of merit

Study of the links between the dysregulations of metabolism and epigenetics marks in Huntington’s disease

We want to focus on epigenetic dysregulation in Huntington’s Disease (HD), a pathogenic mechanism implicated in accelerated aging of striatal neurons. Specifically, we will investigate the interplay between altered energy metabolism and epigenetic impairment in HD striatal neurons to identify new targets/pathways for disease-modifying intervention. We aim to obtain detailed maps of histone post-translational modifications (PTMs), especially of methylations, acetylation and the recently described lactylation, which might be critical in the HD brain. Indeed, these PTMs are tightly regulated by the metabolic status of the cells. We will use proteomics which is the best suited approach to identify and quantify multiple protein PTMs. We consider working on the striatum of WT, R6/1 transgenic mice and the more progressive Q140 knock in model at various stages of disease, to assess evolution of histone PTMs and metabolism with aging. Additionally, to get a dynamic view of the links between metabolic and epigenetic imbalance in HD, we will inject intraperitoneally HD mice and controls with 13C-glucose and analyze over a time course the incorporation of 13C into histone PTMs. Finally, acetyl-CoA, the precursor for histone lysine acetylation, has been shown to be locally produced in the nucleus, by either acetyl-CoA synthetase 2 (ACSS2), ATP-citrate lyase (ACLY) or the pyruvate dehydrogenase complex. Regarding lactylation, it is currently unknown where, and by which enzymes, the pool of lactate used for modifying histone lysines by lactylation is produced. ACSS2 is a very good candidate, as it can catalyze the production of acyl-CoA molecules from the corresponding short chain fatty acids (SCFA). To address the question of the production of metabolites in the vicinity of chromatin in striatal cells, we will use epigenomics (ChIPseq or CUT&tag) to get the genomic distribution of ACSS2 and ACLY and compare it to distributions of acetyl and lactyl histone marks.

Superconducting Devices in Silicon

The project focuses on the study of superconducting devices with silicon as a semiconductor. Those include standard silicon transistors with superconducting source and drain contacts and superconducting resonators. The common properties is the superconducting material which is elaborated with the constrain of being compatible with the silicon CMOS technology.
In the actual situation of the project, devices with CoSi2, PtSi and Si:B superconducting contacts have been fabricated using the 300 mm clean room facility at the LETI and in collaboration with our partners at Uppsala university and C2N Paris Saclay. The main issue is now to characterize the electronic transport properties at very low temperature.

Condensates and Chromatin: How Phase Separation Shapes Plant Temperature Responses

Plants must adapt their development to environmental conditions, including rising temperatures due to climate change. Heat stress significantly impacts plant physiology, and to mitigate these effects, plants have evolved heat shock responses (HSR), with Heat Shock Factor A1a (HSFA1a) serving as a master regulator in Arabidopsis thaliana. Under nonstress conditions, HSFA1a remains cytosolic and inactive, bound to heat shock proteins (HSPs). Heat stress triggers HSP dissociation, enabling HSFA1a nuclear translocation, trimerization, chromatin binding, and activation of stress-responsive genes. Recent studies reveal that HSFA1a might act as a pioneer transcription factor to access closed chromatin regions and initiate HSR. Additionally, preliminary findings also suggest that HSFA1a undergoes liquid-liquid phase separation (LLPS) to form nuclear condensates that regulate gene expression. This project aims to 1) explore how temperature affects HSFA1a structure and oligomerization, 2) investigate LLPS of HSFA1a with and without DNA, 3) characterize HSFA1a pioneer activity, and 4) determine the physiological importance of LLPS in HSR.

Towards a detailed understanding of the regulation of gene expression by acetylation and lactylation of histone proteins

In eukaryotic cells, DNA is wrapped around histone proteins to form chromatin. Dynamic modification of histones by various chemical structures enables fine regulation of gene expression. Alterations in these complex regulatory mechanisms are at the root of many diseases. Histone lysine acetylation is known to induce gene expression. Other structures can be added to histones, whose effects on transcription remain largely to be elucidated. Most of them, like lactylation discovered in 2019, depend on cellular metabolism. We have begun to study lactylation in the context of murine spermatogenesis. This process of cellular differentiation is a model of choice for studying the regulation of transcription, due to the dramatic changes in chromatin composition and the gene expression program. We have generated novel epigenetic profiles consisting of the genome-wide distribution of acetylated and lactylated marks on three histone H3 lysines. The aim of this thesis is to contribute to the deciphering of the “histone code”, firstly by studying the role of lactylations on the transcriptional program. Secondly, the prediction of chromatin states will be refined by integrating our new data with existing epigenomic data at the two studied cellular stages, within neural network models.

Theoretical studies of orbitronic and spin-orbit phenomena in heterostructures comprising van der Waals materials, metals and oxides

The proposed PhD thesis aims at finding the best-unexplored combinations of transition metals, oxides and 2D materials (transition metal dichalcogenides, 2D magnets, graphene…) to help optimizing and providing scientific underpinnings of next generation energy efficient spintronic storage and memory devices based on emerging fields of spin-orbitronics and orbitronics. The latter is a fascinating new field of research that exploits orbital currents and their interaction with spin currents mediated by spin-orbit coupling.

Namely, using first principles calculations combined with tight-binding approach and linear response theory, we will screen the potential of aforementioned heterostructures not only for spin-orbit phenomena such as Dzyaloshinskii-Moriya interaction (DMI), perpendicular magnetic anisotropy (PMA) and spin-charge interconversion based on Rashba and Rashba-Edelstein effects (REE), but also focus on Orbital Rashba Edelstein Effect (OREE). Furthermore, the mechanisms of control of these phenomena via external stimuli (strain, external electric and magnetic fields) will be investigated as well. These studies will help finding optimal material combination to tune DMI, PMA and spin-charge interconversion efficiency to help optimizing spintronic devices making thereby a significant contribution to the development of sustainable microelectronics.

The PhD will be based on a multiscale approach including ab initio, tight-binding and atomistic approaches thus highly motivated candidate with a good background in solid state physics, condensed matter theory and numerical simulations is required. He/she will perform his/her calculations on Spintec computational cluster nodes using first-principles packages based on density functional theory (DFT) combined with other simulation codes/tools. Results obtained will be carefully analyzed with the possibility of publication in international scientific journals. Strong collaboration with labs in France (CEA/LETI, Laboratoire Albert Fert (CNRS,Thales), Aix-Marseille Univ…) and abroad (ICN2-Barcelona, PGI Forschungszentrum Jülich, Osaka University) are previewed.

Top