Biogas upgrading with an advanced Biorefinery for CO2 conversion

The use of renewable energy sources is a major challenge for the coming decades. One way of meeting the growing demand for energy is to valorize waste. Among the various strategies currently developed, the recovery of biogas from anaerobic digestion plants appears to be a promising approach. Biogas is composed mainly of methane, but also of unused CO2 (around 40%). The project proposed here is to reform biogas using a renewable biohydrogen source to convert the remaining CO2 into pure CH4. We propose to set up a stand-alone advanced biorefinery that will combine photoproduction of hydrogen from waste (e.g.: lactoserum) by the bacterium Rhodobacter capsulatus combined with the CO2 present in the biogas in a biomethanation unit containing a culture of Methanococcus maripaludis, a methanogenic archaea able to produce CH4 from CO2 and H2 only (according to the Sabatier reaction). The aim is to produce CH4 in an energy-efficient and environmentally-friendly way.

Nitrogenase Active Site Assembly: What Distinguishes a Nitrogenase from a Scaffold

The challenges posed by climate change and soil degradation call for urgent solutions to reduce greenhouse gas emissions and reliance on nitrogen fertilizers while ensuring sufficient crop yields to feed a growing global population. A natural solution lies in the use of nitrogenase, a bacterial enzyme capable of converting atmospheric nitrogen into ammonia, which can be directly assimilated by plants. However, the biosynthesis of its metal cofactor, FeMo-co, is a complex process that requires the coordinated action of numerous proteins.
This PhD project aims to streamline this complex process by studying simplified nitrogenase systems found in certain organisms, which use fewer proteins, notably by combining multiple functions into single proteins. By conducting comparative structural and functional studies, we seek to understand how these simplified systems work and how they can be adapted for use in crops like cereals, potentially allowing large-scale cultivation without heavy nitrogen fertilizer use.
This project is a collaboration between leading teams at CEA’s Institute of Structural Biology and CSIC Madrid, specializing in metalloprotein structure-function analysis and the biochemistry and genetics of nitrogenase assembly. The successful candidate will work in a cutting-edge research environment, gaining international experience and valuable skills for a future career in academic research or R&D.

Top