Olfactory technology (Qi - Wei): Chinese inspiration for ecotechnology

The specificity of Chinese technological thought has been the subject of recurrent philosophical debate since the early 20th century. This discussion highlights the originality of the sensory relationship with nature expressed in Chinese writing and culture. “Olfactory technology (Qi - Wei): a Chinese inspiration for ecotechnology” explores the hypothesis that a philosophy of technology, inspired by China but open to other cultures, can renew thinking on technology in its relationship to the environment, based on the paradigm of olfaction (Wei).
This approach is based on an analysis of traditional Chinese thought developed by contemporary Chinese philosophers, in particular Gong Huanan, and shows its influence on current Chinese technological thought. It also draws on the work of specialists in olfaction, as well as Western philosophers of technology, science and the imaginary (such as Gilbert Simondon, Gaston Bachelard and Dominique Lestel).
The primary scientific challenge is to restore the olfactory paradigm of Chinese technological thought in order to examine its relationship to the environment, and then to develop a transcultural ecotechnological reflection. In the light of these analyses, we will then reconsider the imaginaries of robotic and digital technologies in order to explore new avenues of innovation. Finally, from a science fiction prototyping perspective, speculative fictions will extend the analysis by examining the impact of imaginable technologies based on the olfactory paradigm.

Towards a high spatial resolution pixel detector for particle identification: new detectors contribution to physics

Future experiments on linear colliders (e+e-) with low hadronic background require improvements in the spatial resolution of pixel vertex detectors to the micron range, in order to determine precisely the primary and secondary vertices for particles with a high transverse momentum. This kind of detector is set closest to the interaction point. This will provide the opportunity to make precision lifetime measurements of short-lived charged particles. We need to develop pixels arrays with a pixel dimension below the micron squared. The proposed technologies (DOTPIX: Quantum Dot Pixels) should give a significant advance in particle tracking and vertexing. Although the principle of these new devices has been already been studied in IRFU (see reference), this doctoral work should focus on the study of real devices which should then be fabricated using nanotechnologies in collaboration with other Institutes. This should require the use of simulation codes and the fabrication of test structures. Applications outside basics physics are X ray imaging and optimum resolution sensors for visible light holographic cameras.

Caliste-3D CZT: development of a miniature, monolithic and hybrid gamma-ray imaging spectrometer with improved efficiency in the 100 keV to 1 MeV range and optimised for detection of the Compton effect and sub-pixel localisation

Multi-wavelength observation of astrophysical sources is the key to a global understanding of the physical processes involved. Due to instrumental constraints, the spectral band from 0.1 to 1 MeV is the one that suffers most from insufficient detection sensitivity in existing observatories. This band allows us to observe the deepest and most distant active galactic nuclei, to better understand the formation and evolution of galaxies on cosmological scales. It reveals the processes of nucleosynthesis of the heavy elements in our Universe and the origin of the cosmic rays that are omnipresent in the Universe. The intrinsic difficulty of detection in this spectral range lies in the absorption of these very energetic photons after multiple interactions in the material. This requires good detection efficiency, but also good localisation of all the interactions in order to deduce the direction and energy of the incident photon. These detection challenges are the same for other applications with a strong societal and environmental impact, such as the dismantling of nuclear facilities, air quality monitoring and radiotherapy dosimetry.

The aim of this instrumentation thesis is to develop a versatile '3D' detector that can be used in the fields of astrophysics and nuclear physics, with improved detection efficiency in the 100 keV to 1 MeV range and Compton events, as well as the possibility of locating interactions in the detector at better than pixel size.

Several groups around the world, including our own, have developed hard X-ray imaging spectrometers based on high-density pixelated semiconductors for astrophysics (CZT for NuSTAR, CdTe for Solar Orbiter and Hitomi), for synchrotron (Hexitec UK, RAL) or for industrial applications (Timepix, ADVACAM). However, their energy range remains limited to around 200 keV (except for Timepix) due to the thinness of the crystals and their intrinsic operating limitations. To extend the energy range beyond MeV, thicker crystals with good charge carrier transport properties are needed. This is currently possible with CZT, but several challenges need to be overcome.

The first challenge was the ability of manufacturers to produce thick homogeneous CZT crystals. Advances in this field over the last 20 years mean that we can now foresee detectors up to at least 10 mm thick (Redlen, Kromek).

The main remaining technical challenge is the precise estimation of the charge generated by the interaction of a photon in the semiconductor. In a pixelated detector where only the X and Y coordinates of the interaction are recorded, increasing the thickness of the crystal degrades spectral performance. Obtaining Z interaction depth information in a monolithic crystal theoretically makes it possible overcome the associated challenge. This requires the deployment of experimental methods, physical simulations, the design of readout microelectronics circuits and original data analysis methods. In addition, the ability to localise interactions in the detector to better than the size of a pixel will help to solve this challenge.

Optimisation of the Gbar experiment for the production of antihydrogen ions

The aim of the Gbar experiment (Gravitational Behavior of Antihydrogen at Rest) at CERN is to produce a large number of antihydrogen atoms to measure their acceleration in Earth's gravitational field. The principle relies on the production of antihydrogen ions through two successive charge exchange reactions that occur when a beam of antiprotons passes through a positronium cloud. In 2022, Gbar demonstrated its operational scheme by producing antihydrogen atoms through the first charge exchange reaction. The current focus is on optimizing and improving various elements of the experiment to achieve the production of anti-H+, particularly the positron line leading to the creation of the positronium cloud. The challenge is to increase the number of positrons trapped in the second electromagnetic trap of the line, and then to transport them efficiently to the reaction chamber where they are converted into positronium.
The thesis work will involve operating, diagnosing, and optimizing the two electromagnetic traps of the line, as well as the positron acceleration and focusing devices to yield a sufficient number of positroniums and then the production of antihydrogen ions. The student will also participate in the measurement campaign for studying the mater counterpart of the second charge exchange reaction, relying upon a beam of H- ion instead of the beam of antiprotons.

Studying inflation with quasars and galaxies in DESI

Measurements of the statistical properties of the large-scale structure (LSS) of the universe provide information on the physics that generated the primordial density fluctuations. In particular, they enable us to distinguish between different models of cosmic inflation by measuring primordial non-Gaussianity (PNG), the deviation from the initial conditions of the Gaussian random field.

Our strategy for studying LLS is to use a spectroscopic survey, DESI, whose instrument was commissioned at the end of 2019. DESI will observe 40 million galaxies and quasars. Observations take place at the 4-m Mayall telescope in Arizona. In the spring of 2021, the project began a five-year period of uninterrupted observations, covering a quarter of the sky.

For this thesis project, LSS are measured with two tracers of matter: very luminous red galaxies (LRG) and quasars, very distant and very luminous objects. These two tracers enable us to cover a wide redshift range from 0.4 to 4.0.

During the first year of his/her thesis, the student will contribute to the final analysis of the first year of DESI observations. In particular, he/she will study LSS with quasars and galaxies (LRG). His/her work will also involve assessing all possible sources of bias in the selection of quasars and LRGs that could contaminate a cosmological signal. In a second phase, the student will develop a more sophisticated analysis using three-point statistics such as the bispectrum with an extended sample to the first three years of DESI observations.

Search for Higgs boson production with a single top and study of the CP properties of the top-Higgs coupling in the diphoton channel with the CMS experiment at the LHC.

Ten years ago, the ATLAS and CMS experiments at LHC at CERN discovered a new boson, with a dataset of proton-proton collisions of about 10 fb-1 at the centre of mass energy of 7 to 8 TeV [1,2]. Since then, the properties of this particle have been tested by both experiments and are compatible with the Higgs boson properties predicted by the Standard Model of particle physics (SM) within the uncertainties. In absence of direct probes of New Physics, increasing the accuracy of the measurements of the properties of the Higgs boson (its spin, its parity and its couplings to other particles) remains one of the most promising path to pursue.
The measurement of the ttH production allows the direct access to the top quark Yukawa coupling, fundamental parameter of the SM. ttH production is a rare process, two orders of magnitude smaller than the dominant Higgs boson production by gluon fusion. This production mode has been observed for the first time in 2018 [3, 4] separately by the CMS and ATLAS experiments, by combining several decay channels. More recently, with the full Run 2 dataset (data recorded between 2016 and 2018, with a total of 138 fb-1 at 13 TeV), this production mode was observed also using solely the diphoton decay channel, and a first measurement of its CP properties was provided again by both experiments, with the exclusion of a pure CP odd state at 3s [5, 6]. The associated production with a single top quark is about 5 times smaller than the ttH production and has never been observed. Thanks to the searches in the diphoton and multilepton channel, very loose constraints on this production modes were set for the first time recently (see Ref. [7]). This production mode is very sensitive to the H-tt coupling CP properties, since in case of CP-odd coupling, its production rate is largely increased. We propose in this thesis to study jointly the two production modes (ttH and tH) and the H-tt coupling CP properties with Run 3 data (data being recorded now and until 2026, with potentially about 250 fb-1 at 13.6 TeV) in the diphoton decay channel. If there was some CP violation in the Higgs sector, excluding small pseudo-scalar contributions will require more data. Pursuing these studies with Run 3 and beyond may allow to pinpoint small deviations not yet at reach. We propose to bring several improvements to the Run 2 analysis strategy and to use novel reconstruction and analysis techniques based on deep-learning, developped in the CEA-Saclay group by our current PhD students but not yet used in physics analyses, in order to make the most of the available dataset.
[1] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1.
[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716 (2012) 30.
[3] ATLAS Collaboration, “Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector”, Phys. Lett. B 784 (2018) 173.
[4] CMS Collaboration, “Observation of ttH Production”, Phys. Rev. Lett. 120 (2018) 231801.
[5] CMS Collaboration, “Measurements of ttH Production and the CP Structure of the Yukawa Inter- action between the Higgs Boson and Top Quark in the Diphoton Decay Channel”, Phys. Rev. Lett. 125, 061801.
[6] ATLAS Collaboration, “CP Properties of Higgs Boson Interactions with Top Quarks in the ttH and tH Processes Using H ? ?? with the ATLAS Detector” , Phys. Rev. Lett. 125 (2020) 061802.
[7] CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery”, Nature 607 (2022) 60.

Detecting the first clusters of galaxies in the Universe in the maps of the cosmic microwave background

Galaxy clusters, located at the node of the cosmic web, are the largest gravitationally bound structures in the Universe. Their abundance and spatial distribution are very sensitive to cosmological parameters, such the matter density in the Universe. Galaxy clusters thus constitute a powerful cosmological probe. They have proven to be an efficient probe in the last years (Planck, South Pole Telescope, XXL, etc.) and they are expected to make great progress in the coming years (Euclid, Vera Rubin Observatory, Simons Observatory, CMB- S4, etc.).
The cosmological power of galaxy clusters increases with the size of the redshift range covered by the catalogue. The attached figure shows the redshift ranges covered by the catalogues of galaxy clusters extracted from experiments observing the cosmic microwave background (first light emitted in the Universe 380,000 years after the Big Bag). One can see that Planck detected the most massive clusters in the Universe in the redshift range 0<z<1. SPT and ACT are more sensitive but covered less sky: they detected tens of clusters between z=1 and z=1.5, and a few clusters between z=1.5 and z=2. The next generation of instruments (Simons Observatory starting in 2024 and CMB- S4 starting in 2032) will routinely detect clusters in 1<z<2 and will observe the first clusters formed in the Universe in 2<z<3.
Only the experiments studying the cosmic microwave background will be able to observe the hot gas in these first clusters at 2<z<3, thanks to the SZ effect, named after its discoverers Sunyaev and Zel’dovich. This effect is due to high energetic electrons of the gas, which distorts the frequency spectrum of the cosmic microwave background, and is detectable in current experiments. But the gas is not the only component emitting in galaxy clusters: galaxies inside the clusters can also emit in radio or in infrared, contaminating the SZ signal. This contamination is weak at z<1 but increases drastically with redshift. One expects that the emission from radio and infrared galaxies in clusters are of the same order of magnitude as the SZ signal in 2<z<3.
One thus needs to understand and model the emission of the gas as a function of redshift, but also the emission of radio and infrared galaxies inside the clusters to be ready to detect the first clusters in the Universe. Irfu/DPhP developed the first tools for detecting clusters of galaxies in cosmic microwave background data in the 2000s. These tools have been used successfully on Planck data and on ground-based data, such as the data from the SPT experiment. They are efficient at detecting clusters of galaxies whose emission is dominated by the gas, but their performance is unknown when the emission from radio and infrared galaxies is significant.
This thesis will first study and model the radio and infrared emission from galaxies in the clusters detected in the cosmic microwave background data (Planck, SPT and ACT) as a function of redshift.
Secondly, one will quantify the impact of these emissions on existing cluster detection tools, in the redshift range currently being probed (0<z<2) and then in the future redshift range (2<z<3).
Finally, based on our knowledge of these radio and infrared emissions from galaxies in clusters, we will develop a new cluster extraction tool for high redshift clusters (2<z<3) to maximize the detection efficiency and control selection effects, that is the number of detected clusters compared to the total number of clusters.

Testing the Standard Model in the Higgs-top sector in the multilepton final using the ATLAS detector at the LHC

The thesis proposes to measure in a coherent way the different rare processes of production of top quarks in association with bosons in the final state with multiple leptons at the Large Hadron Collider (LHC). The thesis will be based on the analysis of the large dataset collected and being collected by the ATLAS experiment at a record energy. The joint analysis of the ttW, ttZ, ttH and 4top processes, where one signal process becomes background when studying the other ones, will allow to get complete and unbiased measurements of the final state with multiple leptons.
These rare processes, which became accessible only recently at the LHC, are powerful probes to search for new physics beyond the Standard Model of particle physics, for which the top quark is a promising tool, in particular using effective field theory. Discovering signs of new physics that go beyond the limitations of the Standard Model is a fundamental question in particle physics today.

STUDY OF THE GALACTIC CENTER AND DIFFUSE EMISSION SEARCHES IN VERY-HIGH-ENERGY GAMMA RAYS WITH H.E.S.S. AND PROSPECTS WITH CTA

Very-high-energy (E>100 GeV) gamma-ray observations of astrophysical objects are a crucial tool for the understanding of the most violent non-thermal acceleration processes taking place in the Universe. The gamma rays allow to attack fundamental questions across a broad range of topics, including supermassive black holes, the origin of cosmic rays, and searches for new
physics beyond the Standard Model. Multi-wavelength observations of the center of the Milky Way unveil a complex and active region with the acceleration of cosmic rays to TeV energies
and beyond in astrophysical objects such as the supermassive black hole Sagittarius A* lying at the center of the Galaxy, supernova remnants or star-forming regions. The Galactic Centre (GC) stands out as one of the most studied regions of the sky in nearly every wavelength, and has been the target of some of the deepest exposures with high-energy observatories. Beyond the diversity of astrophysical accelerators, the GC should be the brightest source of dark matter particle annihilations in gamma rays.
The GC region harbors a cosmic Pevatron, i.e., a cosmic-ray particle accelerator to PeV energies, diffuse emissions from GeV to TeV such as the Galactic Centre Excess (GCE) whose origin is still unknown, potential variable TeV sources as well as likely unresolved source population. The interaction of electrons accelerated in these objects produces very-high-energy gamma rays
via the inverse Compton process of electrons scattering off ambient radiation fields. These gamma rays can also be efficiently produced through decays of neutral pions from inelastic
collisions protons and nuclei with the ambient gas. Among possible unresolved source populations in the GC region are millisecond pulsars in the Galactic bulge or an intermediate-mass (~20-10^5 Msun) black holes following the dark matter distribution of the Galactic halo. About 10^3 sources would be needed to explain the GCE emission. Such source population would leave characteristic imprints in the background fluctuations for which surveys of the GC region in TeV gamma rays with the H.E.S.S. observatory and the forthcoming CTA are unique to scrutinize them.
The H.E.S.S. observatory composed of five atmospheric Cherenkov telescopes detects gamma rays from a few ten GeV up to several ten TeV. H.E.S.S. has carried out extensive observations
of the GC with recently an observational campaign of the inner several degrees around the GC. The dataset accumulated so far provides an unprecedented sensitivity to study the acceleration and propagation of TeV cosmic rays and search for dark matter signals in the most promising region of the sky. These observations are unique to shape the observation programs of the future observatory CTA, optimize their implementation, and prepare future analyses.
The PhD thesis project will be focused on the analysis and interpretation of the observations carried out in the GC region by the H.E.S.S. over about 20 years. The first part of the work will be devoted to the low-level analysis of the GC data, the study of the systematic uncertainties in this massive GC dataset and the development of dedicated background models. In the second part, the PhD student will combine all the GC observations in order to search for TeV diffuse emissions, unresolved population of sources, and dark matter signals using multi-template analysis techniques including background modelling approaches. The third part will be dedicated to the implementation of the new analysis framework to CTA forthcoming data to prepare future GC analyses using the most up-to-date signal and background templates. In addition, the PhD student will be involved in the data taking and data quality selection of H.E.S.S. observations.

High-energy transient astrophysical phenomena

The core of the proposed thesis project will be the real-time search for transient high-energy emission linked to the detection of a gravitational waves and other multi-messenger astrophysical transients like high-energy neutrinos, gamma-ray bursts, fast radio bursts, stellar/nova explosions, etc. The combined observations across multiple instruments and cosmic messengers will unequivocally prove the existence of a high-energy particle accelerators related to these phenomena and will allow to derive novel insights into the most violent explosions in the universe.
Joining the H.E.S.S., CTA and SVOM collaborations the PhD candidate will be able to lead the exciting MWL and multi-messenger campaigns collected during the physics run O4 of the GW interferometers, the first high-energy neutrino events detected by KM3NeT and the first GRBs detected by the SVOM satellite. The PhD candidate will also have the opportunity to participate in the development of the Astro-COLIBRI platform allowing to follow transient phenomena in real-time via smartphone applications.

Top