CUPID-Stage I: Detector optimization and analysis in the context of a next generation 0nbb search
The CUPID experiment (CUORE Upgrade with Particle IDentification) aims to achieve unprecedented sensitivity for the detection of neutrinoless double beta decay (0nßß) using an array of 1596 lithium molybdate (Li2MoO4) crystals of ~450 kg mass. If detected this process would be a direct observation new physics in the lepton sector: in example it violates lepton number by 2 units. Dependent on the model it can provide valuable insight into the neutrino mass-scale and possbily to matter generation in the Universe through leptogenesis.
The use of lithium molybdate for this study is particularly advantageous due to their scintillation properties and the high Q-value of the decay process, which lies above most environmental gamma backgrounds. The CUPID experiment employs this material as cryogenic calorimetric detectors, where the heat signal from particle interactions of O (100 microK/MeV) are registered in a sensitive thermistor at a temperature of ~10 mK. Thanks to the high Q-value Mo-100 features a particularly high sensitivity in terms of large phase space factor and nuclear transition matrix element. This will also allow for precision studies and tests of the standard model, through analyses of the shape of another process: the so-called 2 neutrino double beta decay (2nbb), which is a standard model allowed process. However, this rare process (half-life of 7x10^17yr) is not only an interesting particle/nuclear physics target, it is also expected to contribute the most important background in CUPID: the random coincidence of two events adding up in energy to the Q-value of the 0nßß search.
CUPID aims to deploy its new detector array in two phases: An initial detector array with 1/3 of the mass will be deployed by 2030. In the mean time several tower scale measurement and optimization campaigns during the time of this thesis project will allow to analyze and optimize the detector performance of the CUPID detector modules. The further suppression of this so called pile-up background through detector optimization (acting on the sensor attachment of the light detector with a robotic assembly station developed at CEA) and advanced analysis techniques within this thesis will allow to enhance the sensitivity and science reach of CUPID. A further extension of the analysis techniques developed in this thesis to the processing of an array of O(1000) detectors will be tested with the existing TeO2 detecor array of CUORE. In the context of this process the developed analysis techniques will contribute to the final science analyses of CUORE, the leading experiment for 0nßß search with Te-130.
Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomography
Introduction
Innovative functional imaging technologies are contributing to the CEA's ‘Medicine for the Future’ priority. Positron emission tomography (PET) is a nuclear medical imaging technique widely used in oncology and neurobiology. The decay of the radioactive tracer emits positrons, which annihilate into two photons of 511 keV. These photons are detected in coincidence and used to reconstruct the distribution of tracer activity in the patient's body.
We're proposing you to contribute to the development of an ambitious, patented technology: ClearMind. The first prototype is in our laboratories. This gamma photon detector uses a monolithic scintillating crystal of high density and atomic number, in which Cherenkov and scintillation photons are produced. These optical photons are converted into electrons by a photoelectric layer and multiplied in a MicroChannel plate. The induced electrical signals are amplified by gigahertz amplifiers and digitized by SAMPIC fast acquisition modules. The opposite side of the crystal will be fitted with a matrix of silicon photomultiplier (SiPM).
Today we have our first prototype, and we are preparing two more.
The proposed work
You will work in an advanced instrumentation laboratory in a particle physics environment .
The first step will be to optimize the "components" of ClearMind detectors, in order to achieve nominal performance. We'll be working on scintillating crystals, optical interfaces, photoelectric layers and associated fast photodetectors (MCP-PMT and SiPM), and readout electronics.
We will then characterize the performance of the prototype detectors on our measurement benches, which are under continuous development. The data acquired will be interpreted using in-house analysis software written in C++ and/or Python.
Finally, we will compare the physical behavior of our detectors to Monté-Carlo simulation software (Geant4/Gate).
A particular effort will be devoted to the development of ultra-fast scintillating crystals in the context of a European collaboration.
Supervision
The successful candidate will work under the joint supervision of Dominique Yvon and Viatcheslav Sharyy (DRF/IRFU & BIOMAPS). The CaLIPSO group at IRFU & BIOMAPS specializes in the development and characterization of innovative PET detectors, including detailed detector simulation. As part of the project, we are working closely with IJCLabs in Orsay, which is developing our readout and acquisition electronics, CEA/DM2S, which is working in particular on trusted AI algorithms, CPPM in Marseille, which is evaluating our detectors under PET imaging acquisition conditions, and UMR BIOMAPS (CEA/SHFJ), working on image calculation algorithms.
Requirements
Knowledge of the physics of particle-matter interaction, radioactivity and the principles of particle detectors is essential. A strong interest in instrumentation and laboratory work is recommended. Basic programming skills, e.g. C++, Gate/Geant4 physics simulation software, are important.
Skills acquired
Good knowledge of state-of-the-art particle detector and positron emission tomography technologies. Simulation principles and techniques for particle-matter interaction and detection systems. Analysis of complex data.
Contact
Dominique Yvon, dominique.yvon@cea.fr
Viatcheslav Sharyy, viatcheslav.sharyy@cea.fr