4D printing of thermo-magnetic composite materials using light-driven additive manufacturing techniques

This PhD research project explores the cutting-edge field of 4D printing, a field that integrates smart materials into additivemanufacturing processes. The aim is to create nanocomposite objects with multifunctional capabilities, enabling them to change shapeand properties in response to external stimuli.

In this PhD project, we will primarily focus on liquid crystal elastomers (LCEs) as the active matrix. LCEs are a versatile class ofprogrammable polymer materials that can undergo reversible deformation under various stimuli, such as light, heat, electric fields, andmagnetic fields, transitioning from disordered to oriented phases. Because of their actuation properties, LCEs are promising candidatesin applications like artificial muscles in medicine and soft robotics.

Consequently, the project's first objective is to devise a method for 3D printing LCE resins using light-driven printing processes, includingdigital light processing (DLP), direct ink writing (DIW), and two-photon polymerization. The project also explores the possibility of co-printing using two laser sources with different wavelengths. This will result in designed objects capable of programmed deformationsand reversibility. To further enhance the actuation capabilities of the LCE matrices, magnetic particles will be incorporated into thethermoresponsive LCE resin. Thus, the second objective of the project is to develop a strategy for self-assembling and spatiallyorienting embedded magnetic nanoparticles in LCE resins during light-driven printing processes (DLP, DIW, 2PP). Ultimately, the thirdobjective of this project is to combine these two strategies to create sophisticated multifunctional soft machines and devices suitable forcomplex environments. Experiments will follow an incremental trial-and-error research approach, with the aim of improving machinelearning models by designing purpose-built objects.

The envisioned research work can be summarized into the following macro-steps:
- Specification of target shape-changes depending on the multiple stimulation scenarios
- Selection of active particles, formulation of the LCE, and synthesis of the particles
- Development of hybrid additive manufacturing strategies with possible instrumentation
- Printing proofs-of concept and conducting mechanical and actuation tests
- Characterization of composite structures
- Development of simulation models
- Realization of a demonstrator (e.g., crawling robot, actuators for the automotive sector…)

Multi-level functionality in ferroelectric, hafnia-based thin films for edge logic and memory

The numerical transition to a more attractive, agile and sustainable economy relies on research on future digital technologies.

Thanks to its non-volatility, CMOS compatibility, scaling and 3D integration potential, emerging memory and logic technology based on ferroelectric hafnia represents a revolution in terms of possible applications. For example, with respect to Flash, resistive or phase change memories, ferroelectric memories are intrinsically low power by several orders of magnitude.

The device at the heart of the project is the FeFET-2. It consists of a ferroelectric capacitor (FeCAP) wired to the gate of a standard CMOS transistor. These devices have excellent endurance, retention and power rating together with the plasticity required for neuromorphic applications in artificial intelligence.

The thesis will use advanced characterization techniques, in particular photoemission spectroscopy and microscopy to establish the links between material properties and the electrical performance of the FeCAPs.

Operando experiments as a function of number of cycles, pulse amplitude and duration will allow exploring correlations between the kinetics of the material properties and the electrical response of the devices.

The thesis work will be carried out in close collaboration with NaMLab (Dresden) and the CEA LETI (Grenoble).

Innovative concepts for particles plasma acceleration and radiation emission in laser – overdense plasma interaction at ultra-high intensity

The present PHD work aims at exploring theoretically and numerically the generation of fast particle beams in ultra-relativistic (above 10^21 W/cm2) laser-overdense solid interaction by using properly-structured or shaped targets. Surface characteristics inducing local electromagnetic modes more intense than the laser field and where nonlinear and relativistic effects play a major role will be investigated.

On the basis of the work already carried out, the new scheme for particle acceleration will be extended in the ultra-relativistic regime of laser plasma interaction. It may lead to groundbreaking ultra-short synchronized light and electron sources with applications in probing ultrafast electronic processes. In this context, this theoretical and numerical study will allow to suggest new experimental schemes feasible on the Apollon facility and multi-PW lasers.

Hybrid solid electrolytes for "all-solid" batteries: Formulation and multi-scale characterization of ionic transport

Lithium-ion batteries, widely present in our daily lives, have revolutionized portable applications and are now used in electric vehicles. The development of new generations of batteries for future applications in transport and storing electricity from renewable sources is therefore vital to mitigating climate change. Lithium-ion technology is generally considered as the preferred solution for applications requiring high energy density, while sodium-ion technology is particularly attractive for applications requiring power.

However, the intrinsic instability of liquid electrolytes results in safety issues. Faced with the requirements concerning the environment and safety, solid-state batteries based on solid electrolytes can provide an effective solution while meeting battery energy storage needs. The barriers to overcome allowing the development of all-solid-state battery technology consist mainly in the research of new chemically stable solid electrolytes with good electrical, electrochemical and mechanical performance. For this goal, this thesis project aims to develop “polymer/polymer” and “ceramic/polymer” composite solid electrolytes with high performance and enhanced safety. Characterizations by electrochemical impedance spectroscopy (EIS) will be carried out in order to understand the cation dynamics (by Li+ or Na+) at the macroscopic scale in composite electrolytes, while the local dynamics will be probed using advanced techniques of Solid-state NMR (23Na / 7Li relaxation, 2D NMR, in-situ NMR & operando). Other characterization techniques such as X-ray and neutron diffraction, XPS, chronoamperometry, GITT ... will be implemented for a perfect understanding of the structure of electrolytes as well as aging mechanisms at the electrolyte / electrolyte and electrolyte/electrode interfaces of the all-solid battery.

Key words: composite solid electrolyte, all-solid-state battery, interfaces, multiscale characterization, dynamics of Li + and Na + ions, electrochemical performance, solid-state NMR, X-ray / neutron diffraction.

Modelling point defects for quantum application including electron-lattice interaction and surface effect

The rise of room-temperature applications - nanoscale magnetometry, thermometry, single photon emission, solid-state implementation of qubits - of the negatively charged nitrogen-vacancy NV- center in diamond has motivated a renewed interest in the search, with theoretical methods, of other point defects - in diamond in another material- with a desired property for quantum application, e.g. a bright photoluminescence adna long coherence time of the spin ground state.

However, the fact that the local atomic structure of the defect ground-state or of the excited states is hardly accessible with direct experimental techniques prevents a direct understanding of the thermodynamics stability of defect charge states in the bulk, and of the expected quantum property. This makes the on-demand control of the defect charge state challenging, a problem even more complex near to the surface, because band bending induces a surface modification of the charge state and surface states of ubiquitous defects may be present.

In this Ph.D. work, theoretical methods will be used to predict the defect charge states and explore the effect of the proximity of the surface on the thermodynamic stability and on the spin structure. The objective is threefold: To apply the theoretical framework developed at LSI and predict the defect charge states in bulk; To study changes in the charge state brought by the proximity of the surface; To extend the Hubbard model used to compute the excited states and to account for the electron-lattice interaction in order to compute the zero-phonon line also for the excited states that cannot be predicted by the DFT only. Materials under considerations are carbides -diamond and silicon carbide- and borides - elemental boron and boron compounds. The theoretical method will rely on the Hubbard model developed at LSI in collaboration with IMPMC, and density functional theory (DFT) calculations.

Theoretical study of the physical and optical properties of some titanium oxide surfaces for greenhouse gas sensing applications

The international community is engaged in developing the policy to reduce greenhouse gases (GHGs) emission, in particular carbon dioxide (CO2), in order to reduce the risks associated to the global warming. Consequently, it is very important to find low-cost processes to dissociate and then capture carbon dioxide (CO2), as well as to develop low power, high performance sensors suitable to monitor GHGs reductions.A common and existing method for sensing the concentration of gases is achieved by using semiconducting metal oxides surfaces (MOS) like SnO2, ZnO, and TiO2. Moreover, one route to achieve CO2 dissociation is plasma assisted catalytic decomposition. However, surface defects, and in particular oxygen vacancies and charged trapped therein, play an important role in the (photo)reactivity of MOS. The way optical properties of surfaces are modified by such defects is not completely understood, nor is the additional effect of the presence of the gas. In some models, the importance of charge transfer is also emphasized.

In this Ph.D. work, theoretical methods will be used to model the surface with defects and predict the optical properties. The objective is threefold: To apply the theoretical frameworks developed at LSI for the study of defects to predict the defect charge states in bulk; To study the effect of the surface on the defect stability; to study bulk and surface optical properties, and find out spectroscopic fingerprints of the molecular absorption and dissociation near to the surface. Materials/gas under considerations are oxides like titanium oxide, eventually deposited on a layer on gold, and carbon dioxide. The theoretical method will be the time dependent density functional perturbation theory method (TDDFPT) developed at LSI in collaboration with SISSA, Trieste (Italy).

Ref.: I. Timrov, N. Vast, R. Gebauer, S. Baroni, Computer Physics Communications 196, 460 (2015).

Coupled electron and phonon dynamics in 1d and 2d materials for potential thermoelectric applications: quantum confinement and external phonon bath effects

Today, in the context of climate change and the search for frugal numerical technologies, there is an urgent need to develop a portfolio of thermoelectric materials offering thermal stability, especially for the temperature range 300-400 K, where a large amount of heat is wasted into the environment. Compared to bulk materials, low-dimensional materials, such as nanowires and thin films, offer interesting possibilities for improvement of their thermoelectric properties. In this theoretical project, we aim to describe the coupled dynamics of hot electrons and phonons in low dimensional materials via an approach based on Density Functional Theory and on the solution of coupled Boltzmann transport equations for electrons and phonons. The focus of the project will be to describe main effects of reduced dimensionality and the role of interface and substrate on thermoelectric transport properties in 1D and 2D dimensional materials. The choice of materials is motivated by the potential applicability in the field of next generation energy harvesting, as well as by the ongoing collaborations with experimentalists. Recently, GEEPS researchers have demonstrated that 2D Bi2O2Se allows to achieve a thermoelectric power which is 6-fold larger and closer to room temperature operation than that measured recently by another team. This preliminary result is very encouraging and, at the same time, raises fundamental questions on the physical reasons which led to such outstanding power factor. This is what our theoretical project aims to elucidate.

Spin-current to charge-current interconversion devices: theoretical and experimental optimization of the efficiency

The major argument for promoting the development of spin electronics is the low power dissipation. The aim of the thesis is to determine and optimize the power efficiency of these devices. We focus the study on the power dissipated by two kinds of devices. On the one hand, the devices allowing the reversal of the magnetization of a magnetic layer by a transverse spin current, namely the Spin-Orbit Torque effect (SOT), and on the other hand the devices based on topological materials.

In this context, the definition of useful power - or efficiency - is an open problem. Indeed, the thermodynamics of this type of non-equilibrium system involves cross-effects between the degrees of freedom of the electric charge carriers, those of the spin of these carriers, as well as those of the magnetization of the adjacent layer.

We have developed a variational method in order to establish the stationary state of a Hall bar and the power dissipated in a load circuit. Preliminary measurements have recently validated the prediction in the case of the anomalous Hall effect. The project aims to generalize the study to SOT and topological materials.

Novel membranes based on 2D nanosheets

This thesis project aims to exfoliate new nanostructured architectures based on two-dimensional inorganic phases. These nanostructures will be designed for filtration devices and tested using our microfluidic platform. The target application is water purification and the selective separation of metal ions. The doctoral student will interact with chemists, physicists and electrochemists in a real multidisciplinary environment, on a fundamental research subject directly connected to application needs. Thus, during his thesis, the student will be exposed to a multidisciplinary environment and brought to carry out experiments in various fields such as inorganic chemistry, physical chemistry, micro / nano-fabrication and nano-characterization methods. In In this context, this project should potentially lead to significant societal benefits.

For the realization of the latter, he will have access to a very wide and varied range of equipment ranging from optical microscopes to the latest generation synchrotron (ESRF), including field effect or electron microscopes and galvanostats.

This thesis is therefore an excellent opportunity for professional growth, both in terms of your knowledge and your skills.

Structural evolution under electron irradiation of lamellar hydroxydes and hydrates

The societal context of the study is the optimization of cementitious matrices for nuclear waste conditioning. These cementitious matrices are composed of hydrated minerals, some of which are lamellar (portlandite Ca(OH)2, brucite Mg(OH)2, brushite CaHPO4.2H2O, gibbsite Al(OH)3...). Very few data exist in the literature on the structural damage of these hydrated lamellar minerals under electron irradiation. The aim of the proposed thesis is to experimentally investigate irradiation-induced structural modifications in various types of compounds, with a view to gaining a better understanding of the damage mechanisms of these compounds under irradiation, and to identify irradiation sensitivity criteria in order to ultimately optimize the chemical and mineralogical composition of the materials.

Top