Functionalized aluminosilicate nanotubes for photocatalysis
Rising energy demand and the need to reduce the use of fossil fuels to limit global warming have created an urgent need for clean energy collection technologies. One interesting solution is to use solar energy to produce fuels. Low-cost materials such as semiconductors have been the focus of numerous studies for photocatalytic reactions. Among them, 1D nanostructures are promising because of their interesting properties (high and accessible specific surface areas, confined environments, long-distance electron transport and facilitated charge separation). Imogolite, a natural hollow nanotubes clay, belongs to this category. Its particularity does not lies in its chemical composition (Al, O and Si) but in its intrinsic curvature, which induces a permanent polarization of the wall, effectively separating photo-induced charges. Several modifications of these materials are possible (coupling with metal nanoparticles, functionalization of the internal cavity), enabling their properties to be modulated.We have demonstrated that this clay is a nanoreactor for photocatalytic reactions (H2 production and CO2 reduction) under UV illumination. In order to obtain a useful photocatalyst, it is necessary to extend photon collection into the visible range. One strategy considered is to encapsulate and covalently graft dyes acting as antennae in the cavity. The aim of this thesis is to synthesize imogolites with different internal functionalizations, to study the encapsulation and grafting of dyes into the cavity of these functionalized imogolites, and finally to study the photocatalytic properties.
Quantum computing with nuclear spins
Nuclear spins in solids are amongst the quantum systems with the longest coherence times, up to minutes or even hours, and as such are attractive qubit candidates; however, controlling and reading out individual nuclear spins is highly challenging. In our laboratory, we have developed a new way to do so. The nuclear spin qubits are interfaced by an electron spin ancilla to which they are coupled by the hyperfine interaction. The electron spin is then measured by microwave photon counting at millikelvin temperatures [1,2]. Nuclear-spin single-shot readout is performed via the electron spin [3], and coherent control is achieved through the use of microwave Raman transitions [4]. The electron spins are Er3+ ions in a CaWO4 crystal, and the nuclear spins are 183W atoms in the matrix, which have a spin 1/2.
[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] Z. Wang et al., Nature 619, 276 (2023)
[3] J. Travesedo et al., arxiv (2024)
[4] J. O'Sullivan et al., arxiv (2024)
Exploration of Diamond-Based Nanomaterials for (Sono)photocatalysis: Applications in Hydrogen Production and CO2 Reduction
Nanodiamonds (NDs) are increasingly being studied as semiconductors for photocatalysis, thanks in particular to the very specific positions of their valence and conduction bands, which can be modulated. For example, it has recently been shown that NDs can produce hydrogen under sunlight with an efficiency similar to that of TiO2 nanoparticles. Other studies also show the possibility of photogenerating solvated electrons from certain NDs for CO2 reduction or the degradation of stubborn pollutants.
With a view to accelerating the development of nanodiamond-based ‘solar-to-X’ technologies, we propose in this thesis to integrate nanodiamonds as photocatalysts in a sonophotocatalytic approach. Acoustic cavitation, generated by ultrasound, can improve mass transfer by dispersing catalytic particles and can produce additional reactive species (hydroxyl radicals, superoxides). It also emits sonoluminescence, which can promote the photogeneration of charges and should limit the recombination of charge carriers.
The first phase of the work will focus on the synthesis of nanodiamond-based photocatalysts, exploring various surface chemistries and their association with co-catalysts. Both classical and sonochemical synthesis methods will be used, as preliminary studies have shown that sonochemistry can effectively modify the surface chemistry of NDs. The photocatalytic properties of these materials will first be evaluated, leading to the design of a sonophotocatalytic cell. Further studies will explore the synergies between sonochemistry and photocatalysis for hydrogen production or CO2 reduction. This thesis will be carried out as part of a collaboration between the NIMBE at the Saclay CEA centre and the ICSM at the Marcoule CEA centre.
Brines for metal recycling
Critical metals are essential for a range of technologies that are vital to reduce our carbon dioxide emissions. However, the global recycling rate for metals contained in electronic waste is below 20%, indicating that electronic waste is a relatively untapped source of metals. Additionally, it is increasingly urgent to develop effective processes for recycling waste from products like solar panels, as the volume of waste solar pannels generated is set to rise significantly in the coming years. Currently, conventional hydrometallurgical methods often rely on toxic aqueous solutions to dissolve metals, which presents substantial environmental challenges.
This project proposes an innovative alternative by using concentrated brines (aqueous salt solutions) to oxidize and dissolve metals. This thesis will investigate the fundamental properties of brines and their ability to dissolve metals through various techniques, particularly electrochemical methods. Artificial intelligence methods developed within the lab will be employed to screen a wide range of brines that would allow metal dissolution. Subsequently, brine-based recycling processes will be developed to recover metals from printed circuit boards and solar panels. Finally, metal separation and the treatment of used brines will be explored using membrane and electrochemical processes.
Magneto-ionic gating of magnetic tunnel junctions for neuromorphic applications
Magneto-ionics is an emerging field that offers great potential for reducing power consumption in spintronics memory applications through non-volatile control of magnetic properties through gating. By combining the concept of voltage-controlled ionic motion from memristor technologies, typically used in neuromorphic applications, with spintronics, this field also provides a unique opportunity to create a new generation of neuromorphic functionalities based on spintronics devices.
The PhD will be an experimental research project focused on the implementation of magneto-ionic gating schemes in magnetic tunnel junction’s spintronics devices. The ultimate goal of the project is to obtain reliable and non-volatile gate-control over magnetisation switching in three-terminal magnetic tunnel junctions.
One major challenge remains ahead for the use of magneto-ionics in practical applications, its integration into magnetic tunnel junctions (MTJ), the building blocks of magnetic memory architectures. This will not only unlock the dynamic control of switching fields/currents in magnetic tunnel junctions to reduce power consumption, but also allow for the control of stochasticity, which has important implications in probabilistic computing.
Study of electronic processes in nitride LEDs by electro-emission microscopy
Nitride LEDs are universally used for energy-efficient lighting. They are extremely efficient at low indium content and low current density, allowing to produce commercial white LEDs from a blue LED and a phosphor that absorbs blue and re-emits a broad spectrum in the visible range. However, nitride LEDs suffer from a drastic drop in efficiency at higher current densities and higher indium concentrations, for emission in the green or red. This is an obstacle to extending their use, in order to obtain higher efficiencies with less material, as well as better color rendering. These efficiency drops are partly due to an increase in three-particle Auger-Meitner processes, which are strongly impacted by local device heterogeneities, and can be reduced by specific engineering of structural defects in nitride materials. This thesis proposes to study the electronic processes in nitride LEDs in operando, using electro-emission microscopy. In particular, charge injection mechanisms in the active part of the LEDs and Auger-Meitner processes will be investigated and quantified. The spatial resolution of the technique will allow to characterize the role of heterogeneities (defects or alloy disorder) in the loss processes.
Towards a better understanding of membrane proteins through AI
Despite the remarkable advances in artificial intelligence (AI), particularly with tools like AlphaFold, the prediction of membrane protein structures remains a major challenge in structural biology. These proteins, which represent 30% of the proteome and 60% of therapeutic targets, are still significantly underrepresented in the Protein Data Bank (PDB), with only 3% of their structures resolved. This rarity is due to the difficulty in maintaining their native state in an amphiphilic environment, which complicates their study, especially with classical structural techniques.
This PhD project aims to overcome these challenges by combining the predictive capabilities of AlphaFold with experimental small-angle scattering (SAXS/SANS) data obtained under physiological conditions. The study will focus on the translocator protein TSPO, a key marker in neuroimaging of several serious pathologies (cancers, neurodegenerative diseases) due to its strong affinity for various pharmacological ligands.
The work will involve predicting the structure of TSPO, both in the presence and absence of ligands, acquiring SAXS/SANS data of the TSPO/amphiphile complex, and refining the models using advanced modeling tools (MolPlay, Chai-1) and molecular dynamics simulations. By deepening the understanding of TSPO’s structure and function, this project could contribute to the design of new ligands for diagnostic and therapeutic purposes.
Design of plasmonic nanocomposite membranes for biomolecule detection
Detection of specific small biomolecules amounts is usually challenging. Recently, nanomaterials have provided new materials with interesting optical properties for such an application, especially plasmonic nanomaterials.
In this project, we propose the design of a specific type of nanocomposite made from the incorporation of plasmonic nanoparticles (NPs) within track-etched functionalized polymer membranes. The tuning of the material plasmonic response will be achieved by a controlled in situ NP synthesis directly within the membrane nanopores, through chemical and physico-chemical processes. Especially, the use of radiation (electron beam, ?-rays) to induce the in situ reduction of the metallic precursor will be studied. Ionizing beams (Swift Heavy ions) will also serve to structure the polymer matrix in nanoporous membrane with controlled nanoporosity. The relation between the composite nanostructure and its optical properties will be thoroughly investigated in order to determine the ideal material for biomolecule detection, which will be tested on model molecules such as proteins or virus-like particles (VLPs) in the final part of the project.
Experimental study of boundary layers in turbulent convection by diffusive waves spectroscopy
Turbulent convection is one of the main drivers of geophysical and astrophysical flows, and is therefore a key element in climate modeling. It is also involved in many industrial flows. Transport efficiency is often limited by boundary layers whose nature and transitions as a function of control parameters are poorly understood.
The aim of this thesis will be to set up a convection experiment to probe the dissipation rate in boundary layers in the turbulent regime, using an innovative technique developed in the team: multi-scattered wave spectroscopy.
Sub-critical crack growth in oxide glasses
Material failure is a concern for scientists and engineers worldwide. This includes oxide glasses, which are integral parts of building, electronics, satellites due to multiple advantageous features, including optical transparency, elevated mechanical and thermal properties, chemical durability, biocompatibility and bioactivity, etc. Despite this, oxide glasses have a significate drawback: they are inherently brittle. Oxide glasses are well known to undergo dynamic fracture (crack propagation velocity of ~km/s – as in the case of a glass crashing to the floor and shattering); yet, there is another fracture mode less noticeable that will be studied during this thesis, where crack fronts grow sub-critically. The growth of these crack fronts is aided by environmental parameters including atmospheric humidity and temperature, and the crack front velocity depends on the local stress felt by a crack tip, coined the stress intensity factor.
Currently, our experimental setup tracks the crack front position in time via a tubular microscope equipped with a camera. Post-analysis of images provides the crack front velocity and reveals the environmental limit K_e and region I. However, the current experimental setup cannot capture regions II and III. Several factors play into this limitation: elevated crack front velocity (10e-4 to 1500 m/s), sample size (5×5×25 mm^3), camera acquisition rates, etc.
In recent years, our team has used the potential drop technique to track the crack front velocity when v > 10e-4 m/s in PMMA. This technique involves the deposition of conductive strips on the sample surface. Subsequently, these lines are attached to a high frequency oscilloscope. As the crack front propagates through the sample, the lines are severed resulting in an increase in the electrical resistance. We now wish to adapt this technique to DCDC samples on oxide glasses. The thesis goal is the development and application of the potential drop techniques to DCDC samples. The challenge concerns the spatial temporal resolution (50 µm and 1 ns) in comparison to the crack tip velocity and sample size. The thesis student will take part in all the steps to realize the experiments: designing and depositing patterns (series of strips) on the glass surfaces using a cleanroom, running sub-critical cracking experiments in Region II and III, and analyzing data acquired during the experiment.