Topological and altermagnetic materials: what power can be extracted from the anomalous Hall effect?

The major argument to promote the development of spin electronics and topological materials is the low power dissipation when using spin degrees of freedom and transverse configurations such as Hall configurations. Indeed, in the case of a topological phase, the generated effective magnetic field is expected not to dissipate. However, such an assertion must be the subject of a theoretical description in the context of a realistic electronic device in steady state. The aim of the thesis is to determine the useful power of these devices, in a study that is both experimental and theoretical.

In this context, the definition of the useful power is an open problem. Indeed, the thermodynamics of this type of non-equilibrium system involves cross effects between the degrees of freedom of the electric charge carriers, those of the spin of these carriers, as well as those of the magnetization. The non-equilibrium cross effects are described in a very general way by the famous Onsager reciprocity relations. We have developed a variational method to establish the steady state of a Hall bar and the power dissipated in a load circuit, as a function of the load resistance and the Hall angle. An unexpected result predicts the existence of a maximum ("maximum power transfer theorem"). Preliminary measurements based on the anomalous Hall effect have recently validated the prediction. This experimental confirmation allows us to establish a thesis project that aims to reproduce the measurements on a large set of materials (metals, semiconductors, oxides) and in particular magnetic topological materials, called altermagnetic.

In addition, a ferromagnetic resonance study (called spin pumping) will involve thermoelectric effects, whose dissipative properties, measured on an adjacent load circuit, remain to be determined.

Can we predict the weather or the climate?

According to everyone's experience, predicting the weather reliably for more than a few days seems an impossible task for our best weather agencies. Yet, we all know of examples of “weather sayings” that allow wise old persons to predict tomorrow’s weather without solving the equations of motion, and sometimes better than the official forecast. On a longer scale, climate model have been able to predict the variation of mean Earth temperature due to CO2 emission over a period of 50 year rather accurately.

In the late 50’ and 60’s, Lewis Fry Richardson, then Edward Lorenz set up the basis on the resolution of this puzzle, using observations, phenomenological arguments and low order models.

Present progress in mathematics, physics of turbulence, and observational data now allow to go beyond intuition, and test the validity of the butterfly effect in the atmosphere and climate. For this, we will use new theoretical and mathematical tools and new numerical simulations based on projection of equations of motion onto an exponential grid allowing to achieve realistic/geophysical values of parameters, at a moderate computational and storage cost.

The goal of this PhD is to implement the new tools on real observations of weather maps, to try and detect the butterfly effect on real data. On a longer time scale,, the goal will be to investigate the “statistical universality” hypothesis, to understand if and how the butterfly effect leads to universal statistics that can be used for climate predictions, and whether we can hope to build new “weather sayings” using machine learning, allowing to predict climate or weather without solving the equations.

Research of nanostructured oxides for CO2 capture assisted by synthesis robot and artificial intelligence.

The advent of robotic syntheses assisted by artificial intelligence opens up countless perspectives for the discovery of new nanomaterials, while raising the question of correctly validating these approaches. The goal of this thesis is to discover new nanostructured oxides to make CO2 capture and sequestration energetically efficient. This will require to 1) confirm or disprove that the automated preparation method (mixing robot coupled with a characterization platform by X-ray diffusion and gas analysis) is an approach representative of standard preparation methods, or if the automation is a new preparative approach independent of standard methods, and 2) confirm or disprove that the exploration of the vast space of parameters (nature of oxides, nanostructuring agents, injection laws) makes it possible to exceed the performances of the best current materials.

Perovskite ferroelectric oxynitride thin films with tunable properties

N-doped oxides and/or oxinitrides constitute a booming class of compounds with a broad spectrum of useable properties and in particular for novel technologies of carbon-free energy production. Indeed, the insertion of nitrogen into the crystal lattice of a semiconductor oxide allows, in principle, to modulate the value of its band gap or to introduce additional electronic states and thus to obtain new functionalities and optical properties. The production of oxynitride single crystalline thin films is highly challenging. In this essentially experimental thesis work, thin films of oxynitrides will be developed by atomic plasma-assisted molecular beam epitaxy. We will start from BaTiO3, which synthesis is well mastered in the laboratory, to realize co-dopings with nitrogen and compensating metals in order to preserve the neutrality of the elementary unit cell. The resulting structures will be studied for their chemical compositions, crystalline structures and ferroelectric characteristics. These observations will be correlated with their performance for the photo-electrolysis of water, which allows the virtuous production of hydrogen. Finally, the corrosion resistance of these new materials will also be studied.
The student will acquire skills in a wide range of ultra-high vacuum techniques, molecular beam epitaxy growth, clean room lithography, ferroelectric measurements and photo-electrolysis of water, as well as in state-of-the-art synchrotron radiation techniques.

Perovskite devices for solar hydrogen production

Project Overview:
The PhD thesis is part of the ICARUS European project, aiming to develop efficient solar energy conversion systems for a carbon-neutral future. The project focuses on integrating photoelectrochemical (PEC) water splitting and photovoltaic (PV) power generation.

Key Objectives:
•Develop innovative metal halide perovskite solar cells with tunable bandgaps for broader light absorption.
•Optimize printed carbon-based solar cells and scaffolds for improved conductivity, mechanical resistance, and durability.
•Incorporate innovative carbon counter electrodes into perovskite devices.
•Upscale and manufacture solar modules.
•Integrate the developed modules into a final PEC prototype.

Research Focus:
The PhD candidate will primarily focus on:
•Printed carbon-based solar cells: Optimizing ink properties, investigating the behavior of printed conductive ink under various conditions, and characterizing conductivity and mechanical resistance.
•Perovskite devices: Incorporating innovative carbon counter electrodes and evaluating their performance and stability.
•Module manufacturing: Upscaling and manufacturing solar modules based on the developed technologies.
•PEC prototype integration: Contributing to the final integration of the PEC prototype.

Expected Outcomes:
The research is expected to contribute to the development of highly efficient and sustainable solar energy conversion systems, supporting the transition to a carbon-neutral future. The findings will have implications for both academic research and industrial applications.

Giant magnetoresistance resistors for local characterization of surface magnetic state: towards Non-Destructive Testing (NDT) applications

CIFRE thesis in the field of non-destructive testing using magnetic sensors in collaboration with 3 partners:

Laboratoire de Nanomagnétisme et Oxyde (SPEC/LNO) du CEA Paris-Saclay
Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
Entreprise CmPhy

Very high energy electrons radiotherapy with beams from a wakefield accelerator

Research objectives:
Use numerical modelling to optimize the properties of laser-plasma accelerators in the 50 MeV-200 MeV range for VHEE radiotherapy:
(i) optimize the properties of a laser-plasma accelerator (energy spread, divergence) with electron beams injected from a plasma-mirror injector using the WarpX and HiPACE++ codes.
(ii) Study the impact of such electron beams on DNA using Geant4DNA.

This numerical modelling will then be used to guide/design/interpret experiments of radiobiology on in-vitro biological samples that are planned at our in-house 100 TW laser facility at CEA during the project. This will be carried out in the context of research project FemtoDose funded by the French National Research Agency.

The researcher will benefit from a large variety of training available at CEA on HPC and computer programming as well as training at our industrial partners (ARM, Eviden) and Université Paris Saclay, which has MSc courses in radiobiology and also hosts a research centre (INanoTherad) dedicated to novel radiotherapy treatments, gathering physicists, radiobiologists and medical doctors. The activities will be carried out in the framework of the Marie Sklodowska Curie Action Doctoral Network EPACE (European compact accelerators, their applications, and entrepreneurship)

Flying Qubit in Graphene

The solid-state systems, presently considered for quantum computation, are built from localized two-level systems, prime examples are superconducting qubits or semiconducting
quantum dots. Due to the fact that they are localized, they require a fixed amount of hardware per qubit.

Propagating or “flying” qubits have distinct advantages with respect to localised ones: the hardware footprint depends only on the gates and the qubits themselves (photons) can be created on demand making these systems easily scalable. A qubit that would combine the advantages of localised two-level systems and flying qubits would provide a paradigm shift in quantum technology. In the long term, the availability of these objects would unlock the possibility to build a universal quantum computer that combines a small, fixed hardware footprint and an arbitrarily large number of qubits with long-range interactions. A promising approach in this direction is to use electrons rather than
photons to realise such flying qubits. The advantage of electronic excitations is the Coulomb interaction, which allows the implementation of a two-qubit gate.

The aim of the present Phd will be the development of the first quantum-nanoelectronic platform for the creation, manipulation and detection of flying electrons on time scales down to the picosecond and to exploit them for quantum technologies.

Novel oxynitride based artificial multiferroic oxynitride thin films

N-doped oxides and/or oxinitrides constitute a booming class of compounds with a broad spectrum of useable properties and in particular for novel technologies of carbon-free energy production, surface coatings for improving the mechanical strength of steels or protection against corrosion and multifunctional sensors. In this research field the search for new materials is particularly desirable because of unsatisfactory properties of current materials. The insertion of nitrogen in the crystal lattice of an oxide semiconductor allows in principle to modulate its electronic structure and transport properties enabling new functionalities. A detailed understanding of these aspects requires materials that are as perfect as possible. The production of corresponding single crystalline thin films is however highly challenging. In this thesis work, single crystalline oxynitride heterostructures will be grown by atomic plasma-assisted molecular beam epitaxy. The heterostructure will combine two N doped layers: a N doped BaTiO3 will provide ferroelectricity and a heavily doped ferrimagnetic ferrite whose magnetic properties can be modulated using N doping to obtain new artificial multiferroic materials better suited to applications. The resulting structures will be investigated with respect to their ferroelectric and magnetic characteristics as well as their magnetoelectric coupling, as a function of the N doping. These observations will be correlated with a detailed understanding of crystalline and electronic structures. The later will be modelled thanks to electronic structure calculation to reach a comprehensive description of this new class of materials.

The student will acquire skills in ultra-high vacuum techniques, molecular beam epitaxy, ferroelectric and magnetic characterizations as well as in state-of-the-art synchrotron radiation techniques. X-ray magnetic dichroism is particularly suited to this study and the project will give rise to close collaboration and/or co-supervision with the DEIMOS beamline of SOLEIL synchrotron.

Numerical twin for the Flame Spray Pyrolysis process

Our ability to manufacture metal oxide nanoparticles (NPs) with well-defined composition, morphology and properties is a key to accessing new materials that can have a revolutionary technological impact, for example for photocatalysis or storage of energy. Among the different nanopowders production technologies, Flame Spray Pyrolysis (FSP) constitutes a promising option for the industrial synthesis of NPs. This synthesis route is based on the rapid evaporation of a solution - solvent plus precursors - atomized in the form of droplets in a pilot flame to obtain nanoparticles. Unfortunately, mastery of the FSP process is currently limited due to too much variability in operating conditions to explore for the multitude of target nanoparticles. In this context, the objective of this thesis is to develop the experimental and numerical framework required by the future deployment of artificial intelligence for the control of FSP systems. To do this, the different phenomena taking place in the synthesis flames during the formation of the nanoparticles will be simulated, in particular by means of fluid dynamics calculations. Ultimately, the creation of a digital twin of the process is expected, which will provide a predictive approach for the choice of the synthesis parameters to be used to arrive at the desired material. This will drastically reduce the number of experiments to be carried out and in consequence the time to develop new grades of materials

Top