Synthetic methodologies towards functionalized azaheterocycles and application to energetic molecules

The objective of the PhD is to develop new synthesis and/or functionalization methods to obtain functionalized heterocyclic molecules. These molecules are based on 5- or 6-member azaheteroaromatic rings (diazines, triazines, triazoles, tetrazoles, etc.). The targeted structures make it possible to envisage high densities and enthalpies of formation, while maintaining low sensitivity (thermal, mechanical, etc.). They find applications in the energy field, notably propulsion, explosives and gas generators (airbags). In addition, these heterocyclic compounds as well as the intermediates are also structurally close to families of biologically active products and/or likely to exhibit fluorescence properties, as already shown in a previous PhD in the laboratory.

IO access scheduling on magnetic tapes using machine learning

Numerical simulations are used to obtain responses to physical phenomena that
cannot be reproduced, either because they are too dangerous or too expensive.
The models used for these simulations are increasingly complex, in terms of
size and precision, and require access to increasingly large computing and
data storage capacities. To this end, and in order to optimize costs, the use
of mass storage technologies such as magnetic tapes is critical. However, to
ensure good overall system performance, the development of algorithms and
mechanisms related to data placement and tape access scheduling is essential.
The objective of the thesis is to study the technology of magnetic tapes, as
well as existing mechanisms such as RAO (Recommended Access Order) or request
retention; and to implement new strategies for the optimization of magnetic
tape performance.

Study of an electron beam transport in gas

Command-control for solid state pulse generators

Synthesis of organic aerogels from polydicyclopentadiene derivatives

The study of inertial confinement fusion of the deuterium + tritium (DT) mixture has long been a research focus at the CEA. Experiments related to this topic, carried out within the Laser Mégajoule (LMJ) facility, require the use of materials with specific properties. This includes, among others, polymer foams (organic aerogels) used as pre-ignition targets. Such materials must combine very low density with sufficient mechanical strength to be compatible with the preparation process employed.
In this context, the objective is to develop CHx polymeric aerogels based on polydicyclopentadiene (pDCPD) and other polymers derived from ring-opening metathesis polymerization (ROMP), in order to produce materials that are (i) of low apparent density (target value in the project: below 50 mg/cc), (ii) homogeneous, (iii) exhibiting fine (open) nano-porosity, and (iv) machinable.
The proposed PhD work would focus on three main areas:
1. The synthesis of new (co-)monomers
2. The preparation of organic aerogels
3. The exploitation of data using AI (opportunity)

Top