Automatization of quantum computing kernel writing for quantum applications

The framework of Hamiltonian simulation opens up a new range of computational approaches for quantum computing. These approaches can be developed across all relevant fields of quantum computing applications, including, among others, partial differential equations (electromagnetism, fluid mechanics, etc.), quantum machine learning, finance, and various methods for solving optimization problems (both heuristic and exact).

The goal of this thesis is to identify a framework where these approaches—based on Hamiltonian simulation or block-encoding techniques—are feasible and can be written in an automated way.

This work could extend to the prototyping of a code generator, which would be tested on practical cases in collaboration with European partners (including a few months of internship within their teams).

Increasing the electrothermal robustness of new SiC devices

Silicon Carbide (SiC) is a semiconductor with superior intrinsic properties than Silicon for high temperature and high power electronics applications. SiC devices are expected to be extensively used in the electrification transition and novel energy management applications. To fully exploit the SiC superior properties, the future semiconductor devices will be used under extreme biasing and temperature conditions. These devices must operate safely at higher current densities, higher dV/dt and higher junction temperatures than Si devices does.
The objective of this thesis is to study the SiC devices fabricated at LETI under these extreme operating conditions, and to optimize their design to fully use the theoretical potential of SiC. The thesis work will include several phases that will be strongly coupled:
- Advanced electro-thermal characterisation (50%), by proposing new approaches to testing components in a box or on a suitable support, using artificial intelligence (AI) tools for data extraction and processing. The work will include adapting standard measurement methodologies to the specific switching characteristics of SiC.
- An assessment (15%) of the design and technological parameters responsible for the operating limits of the components.
- A physico-chemical characterisation component (15%) to analyse failures under these extreme conditions.
- The inclusion of predictive models (20%) for the sensitivity of architectures to extreme conditions and faults, based on modelling.

Design and optimization of color routers for image sensors

Color routers represent a promising technology that could revolutionize the field of image sensors. Composed of nanometricstructures called metasurfaces, these devices allow the modification of light propagation to improve the quantum efficiency of pixels. Thanks to recent technical advances, it is now possible to design and manufacture these structures, paving the way for more efficient image sensors.
The thesis topic focuses on the design and optimization of color routers for image sensors. Several research avenues will be explored, such as the implementation of new metasurfacegeometries (`freeform`) or innovative configurations to reduce pixel pitch (0.5µm or 0.6µm). Various optimization methods can be used, such as the adjointmethod, machine learning, or the use of auto-differentiable solvers. The designs must be resilient to the angle of light incidence and expected variations during manufacturing. After this simulation phase, the proposed structures will be manufactured, and the student will have the mission to characterize the chips and analyze the obtained results (quantum efficiency, modulation transfer function...).
This thesis will be co-supervised by STMicroelectronics and CEA LETI in Grenoble. The student will be integrated into the teams of engineer-researchers working on this project. He/she will be led to collaborate with various specialists in various fields such as lithography and optical characterization.
The student's main activities:
- Optical simulation using numerical methods (FDTD, RCWA)
- Development of optimization methodologies for metasurfacedesign (adjointmethod, topological optimization...)
- Electro-optical characterization and analysis of experimental data

Sub-THz programmable electromagnetic surfaces based on phase change material switches

Spatiotemporal manipulation of the near- and far-electromagnetic (EM)-field distribution and its interaction with matter in the THz spectrum (0.1-0.6 THz) is of prime importance in the development of future communication, spectroscopy, imaging, holography, and sensing systems. Reconfigurable Intelligent (Meta)Surface (RIS) is a cutting-edge hybrid analogue/digital architecture capable of shaping and controlling the THz waves at the subwavelength scale. To democratize the RIS technology, it will be crucial to reduce its energy consumption by two orders of magnitude. However, the state-of-the-art does not address the integration, scalability, wideband and high-efficiency requirements.
Based on our recent research results, the main objective of this project will be to demonstrate novel silicon-based RIS architectures s at 140 GHz and 300 GHz. The enhancement of the THz RIS performance will derive from a careful choice of the silicon technology and, from novel wideband meta-atom designs (also called unit cell or element) with integrated switches based on PCM (phase change material). The possibility of dynamically controlling the amplitude of the transmission coefficients of the meta-atoms, besides their phase, will be also investigated. Near-field illumination will be introduced to obtain an ultra-low profile. To the best of our knowledge, this constitutes a new approach for the design of high-gain antennas in the sub-THz range.

Defense of scene analysis models against adversarial attacks

In many applications, scene analysis modules such as object detection and recognition, or pose recognition, are required. Deep neural networks are nowadays among the most efficient models to perform a large number of vision tasks, sometimes simultaneously in case of multitask learning. However, it has been shown that they are vulnerable to adversarial attacks: Indeed, it is possible to add to the input data some perturbations imperceptible by the human eye which undermine the results during the inference made by the neural network. However, a guarantee of reliable results is essential for applications such as autonomous vehicles or person search for video surveillance, where security is critical. Different types of adversarial attacks and defenses have been proposed, most often for the classification problem (of images, in particular). Some works have addressed the attack of embedding optimized by metric learning, especially used for open-set tasks such as object re-identification, facial recognition or image retrieval by content. The types of attacks have multiplied: some universal, other optimized on a particular instance. The proposed defenses must deal with new threats without sacrificing too much of the initial performance of the model. Protecting input data from adversarial attacks is essential for decision systems where security vulnerabilities are critical. One way to protect this data is to develop defenses against these attacks. Therefore, the objective will be to study and propose different attacks and defenses applicable to scene analysis modules, especially those for object detection and object instance search in images.

RF Circuit Design for Zero Energy Communication

Our ambition for 6G communication is to drastically reduce the Energy in IoT. For that purpose we aim at developing an integrated circuit enabling zero Energy communication.
The objective of this PhD is to design this circuit in FD-SOI and operating in the 2.4 GHz. In this PhD, we propose to use a new design technique which is currently revolutionizing the radio-frequency design. We expect that many innovations can be carried out during this PhD by combining those two innovations.
The candidate will integrate a large design team and he will participate in collaborative project at european level. As a first step, he will analyze the system constraints to choose the best architecture and derive the specifications. Then, he will formalize mathematically the performances of the backscattering technique in order to setup a design methodology. Then he will be working full time on circuit design, sending to fabrication two circuits in 22 um technology. He will be also involve in the test of the circuit as well as in the preparation of a demonstrator of the backscattering techniques. We expect to publish several papers in high level conferences.

Study of 3D pattern etch mechanisms into inorganic layers for optoelectronic applications

Optoelectronic devices such as CMOS Image Sensors (CIS) require the realization of 3D structures, convex microlenses, in order to focus photons towards the photodiodes defining the pixels. These optical elements are mandatory for the device efficiency. Their shape and dimension are critical for device performances. In the same way, devices based on diffractive optic and hyperspectral sensors are looking for complex multi-height structures. Finally, recent micro-display technologies for augmented reality (AR) and virtual reality (VR) require 3D structures difficult to achieve with conventional micro-fabrication technics.
Leti is at the state of the art on an alternative photolithography technics, so-called Grayscale. This process can produce a whole range of 3D structures not available with standard photolithography, such as concave, elliptic, pyramids and asymmetrical shapes. These structures could be used in a large number of application fields, like photonics and micro-displays (AR/VR). Once these structures achieved in photoresist, it is necessary to transfer them in an adapted functional layer using plasma etching. The etch mechanisms behind the transfer of micrometric 3D patterns into a polymer layer have been recently studied at Leti. To address new application needs, it is interesting to transfer these structures into silicon based inorganic layers because of their optical properties. Furthermore, the 3D pattern dimensions, currently few micrometers, need to be sub-micrometric for the most advanced technologies. In these condition, pattern transfer fidelity of 3D structures is even more challenging and it underlines why the etch mechanisms need to be well understood.
Currently the transfer into inorganic layers by plasma etching of submicronic 3D patterns obtained with Grayscale photolithography is not well studied in literature. Consequently, this thematic is innovative and has a real benefit. The goal of this PhD thesis is to study and understand the etch mechanisms in order to control the shape and dimension of the transferred structures. The work will be very experimental and will be mainly performed in Leti’s 300mm cleanroom. You will have access to a last generation plasma etch tool and numerous characterization technics. This thesis is in collaboration with the photolithography department and in interaction with different teams, such as the silicon platform and application department.

Learning world models for advanced autonomous agent

World models are internal representations of the external environment that an agent can use to interact with the real world. They are essential for understanding the physics that govern real-world dynamics, making predictions, and planning long-horizon actions. World models can be used to simulate real-world interactions and enhance the interpretability and explainability of an agent's behavior within this environment, making them key components for advanced autonomous agent models.
Nevertheless, building an accurate world model remains challenging. The goal of this PhD is to develop methodology to learn world models and study their use in the context of autonomous driving, particularly for motion forecasting and developing autonomous agents for navigation.

Secure and Agile Hardware/Software Implementation of new Post-Quantum Cryptography Digital Signature Algorithms

Cryptography plays a fundamental role in securing modern communication systems by ensuring confidentiality, integrity, and authenticity. Public-key cryptography, in particular, has become indispensable for secure data exchange and authentication processes. However, the advent of quantum computing poses an existential threat to many of the traditional public-key cryptographic algorithms, such as RSA, DSA, and ECC, which rely on problems like integer factorization and discrete logarithms that quantum computers can solve efficiently. Recognizing this imminent challenge, the National Institute of Standards and Technology (NIST) initiated in 2016 a global effort to develop and standardize Post-Quantum Cryptography (PQC). After three rigorous rounds of evaluation, NIST announced its first set of standardized algorithms in 2022. While these algorithms represent significant progress, NIST has expressed an explicit need for additional digital signature schemes that leverage alternative security assumptions, emphasizing the importance of schemes that offer shorter signatures and faster verification times to enhance practical applicability in resource-constrained environments. Building on this foundation, NIST opened a new competition to identify additional general-purpose signature schemes. The second-round candidates, announced in October 2024, reflect a diverse array of cryptographic families.

This research focuses on the critical intersection of post-quantum digital signature algorithms and hardware implementations. As the cryptographic community moves toward adoption, the challenge lies not only in selecting robust algorithms but also in deploying them efficiently in real-world systems. Hardware implementations, in particular, must address stringent requirements for performance, power consumption, and security, while also providing the flexibility to adapt to multiple algorithms—both those standardized and those still under evaluation. Such agility is essential to future-proof systems against the uncertainty inherent in cryptographic transitions. The primary objective of this PhD research is to design and develop hardware-agile implementations for post-quantum digital signature algorithms. The focus will be on supporting multiple algorithms within a unified hardware framework, enabling seamless adaptability to the diverse needs of evolving cryptographic standards. This involves an in-depth study of the leading candidates from NIST’s fourth-round competition, as well as those already standardized, to understand their unique computational requirements and security properties. Special attention will be given to designing modular architectures that can support different signatures, ensuring versatility and extensibility. The proposed research will also explore optimizations for resource efficiency, balancing trade-offs between performance, power consumption, and area utilization. Additionally, resilience against physical attacks (side-channel attacks and fault injection attacks) will be a key consideration in the design process. This PhD project will be conducted within the PEPR PQ-TLS project in collaboration with the TIMA laboratory (Grenoble), the Agence nationale de la sécurité des systèmes d’information (ANSSI) and INRIA.

Distributed Passive Radar

Our objective is to detect and locate drones entering an urban area to be protected by observing the signals emitted by cellular stations. Studies have shown that it is possible to locate a drone if it is close to the listening system and the cellular station (i.e. the base station). When the situation is more complex (i.e. there is no direct path between the cellular station and the radar or in the presence of several transmitting cellular stations causing a high level of interference), a single listening system called passive radar cannot correctly detect and locate the drone. To overcome these difficult conditions, we wish to distribute or deploy in the area to be protected a set of low-complexity passive radars which optimally exploit the signals emitted by these cellular stations. A distribution and deployment strategy for passive radars must then be considered by taking into account the positions of the transmitting cellular stations. The possibility of exchanging information between passive radars must also be considered in order to better manage interference linked to cellular stations.

Top