The CEA welcomes 1,600 doctoral PhD students to its laboratories each year.
Thesis
Home / Post Doctorat / Assessment of bimetallic bonds for molten salt nuclear reactors: understanding the microstructure-mechanical behavior relationships
Assessment of bimetallic bonds for molten salt nuclear reactors: understanding the microstructure-mechanical behavior relationships
Engineering sciencesMaterials and applications
Abstract
Nickel-based alloys are the natural candidates for corrosion-resistant metallic materials, but their mechanical behavior and resistance to irradiation may not be satisfactory. To overcome this difficulty, the CEA with its partners in the ISAC project is developing generic solutions for bimetallic components that allow the surface of a reference material known for its good behavior under irradiation to be functionalized by a thick deposit of a nickel-based grade.
Two reference materials were selected for this study, the austenitic steel 316L(N) and the martensitic steel with phase transformation Fe-9Cr T91. The behavior of these two grades under irradiation is well known and controlled. The process used for deposition is thick TIG welding which is close to additive manufacturing methods. It has the advantage of being generic and simple to implement on very different parts (ferrules, plates, inside tubes ...). The purpose of this post doc is to evaluate the relevance of this bimetallic concept for MSR.
Laboratory
Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de Recherche en Matériaux et procédés Avancés
Laboratoire d’étude du Comportement Mécanique des Matériaux