About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Conception and deployment of innovative optimal control strategies for smart energy grids

Conception and deployment of innovative optimal control strategies for smart energy grids

Numerical simulation Smart Energy grids Technological challenges

Abstract

District heating networks (DHNs) play a vital role in energy transition strategies due to their ability to integrate renewable and waste heat effectively. In France, the national low-carbon strategy emphasizes expanding and optimizing DHNs, including smaller networks with multiple heat sources like solar thermal and storage. Smart control systems, such as model-predictive control (MPC), aim to replace manual, expert-based practices to enhance efficiency. However, deploying advanced control systems on small DHNs remains challenging due to the cost and complexity of hardware and maintenance requirements.

Current industrial solutions for large DHNs leverage mixed-integer linear programming (MILP) for real-time optimization, while smaller networks often rely on rule-based systems. Research efforts focus on simplifying MPC models, utilizing offline pre-calculations, or incorporating machine learning to reduce complexity. Comparative studies assess various control strategies for adaptability, interpretability, and operational performance.

This postdoctoral project aims to advance DHN control strategies by developing, testing, and deploying innovative approaches on a real DHN experimental site. It involves creating and comparing control models, implementing them in a physical simulator, and deploying the most promising solutions. Objectives include optimizing operational costs, improving system robustness, and simplifying deployment while disseminating findings through conferences, publications, and potential patents. The researcher will have access to cutting-edge tools, computational resources, and experimental facilities.

Laboratory

Département Thermique Conversion et Hydrogène (LITEN)
Service Système Energétique Territoire et Industrie
Laboratoire des systèmes énergétiques pour les territoires
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down