About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Development of an innovative method for ultrasound imaging of velocity fields in flows behind opaque walls

Development of an innovative method for ultrasound imaging of velocity fields in flows behind opaque walls

Engineering sciences Factory of the future incl. robotics and non destructive testing Instrumentation Technological challenges

Abstract

Today, the only solutions on the market for measuring 2D velocity fields are laser-based optical methods (such as particle imaging velocimetry: PIV).
These are limited by the need for optical access to the flow and are therefore inapplicable on opaque fluids (such as liquid metals) or through opaque pipes (such as metal pipes, the majority in industry).
To overcome this limitation and meet new challenges (in research and industry) it is possible to rely on acoustic imaging methods.

The LISM (CEA Cadarache Instrumentation Laboratory) has been working for several years on the development of an industrial acoustic PIV (or echo-PIV) method.
An initial thesis has led to significant progress, and the CEA is now planning to market echo-PIV scanners through a start-up project.
However, there are still a number of hurdles to overcome, in particular that of imaging through walls with high acoustic impedance differences.

Your main objective will be to remove these obstacles. This mission will be structured as follows:
- Bibliographical study and familiarisation with the echo-PIV method
- Numerical study and development of a solution to resolve the problems of energy transmission through the metal wall
- Experimental validation of the detection of microscopic reflectors through a metal wall
- Numerical study and development of a solution to the problem of multiple reflection within the metal wall, leading to poor reconstruction of the final image
- Experimental validation of the solution to the reflection problem
- Adaptation of the acoustic imaging method to simultaneously resolve the transmission and reflection problems
- Publication in scientific journals (and/or patents)

Laboratory

Département de Technologie Nucléaire
Service de Technologie des Composants et des Procédés
Laboratoire d’Instrumentation Systèmes et Méthodes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down