Developments in energy transport and storage technologies (fast-charge technologies, high energy density batteries) mean that these systems generate considerably more heat during operation. In addition, the ever-increasing drive to miniaturise embedded systems is constantly reducing the space allocated to cooling, leading to the obsolescence of forced convection cooling systems (active systems) and inevitably affecting their performance, lifespan and reliability. These various factors inevitably lead to the need to develop a new class of materials that dissipate heat via their own structure.
The original strategy proposed consists of manufacturing thermally conductive and electrically insulating nanocomposites loaded with 1D and 2D nanoparticles with a rheology that is suitable for the 3D additive manufacturing process (FDM, Fused Deposition Modeling).
To this end, you will develop an insulating coating on the surface of conductive nanofillers using a sol-gel process, and the influence of the various synthesis parameters (T, pH, coupling agent, precursor rate, etc.) on the homogeneity and thickness of the shell will be studied and optimised. In addition, in order to reduce phonon diffraction at the nanofiller/matrix interface, surface functionalisation will be evaluated. Finally, the development of the nanocomposite, the manufacture of printable filaments and the shaping by 3D printing (fused deposition modeling - FDM) will be studied in order to optimize the thermal management of the battery casing. The anisotropy of the nanocomposite resulting from the morphology of the nanoparticles, combined with the printing process and the innovative design of the passive system, will optimise the thermal management of the entire module