About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Post Doctorat   /   Thermodynamic modelling of protective coating for solid oxide electrolysis cells

Thermodynamic modelling of protective coating for solid oxide electrolysis cells

Advanced hydrogen and fuel-cells solutions for energy transition Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry Technological challenges

Abstract

In the pursuit of a sustainable energy future, solid oxide electrolysis cells (SOECs) are a highly promising technology for producing clean hydrogen by electrolysis of water at high temperature (between 500 and 850°C). Although high operating temperature offers many benefits (high efficiency and low power consumption), it can lead to degradation of the interconnectors. Coatings are proposed to improve the long-term performance of interconnectors and reduce corrosion problems. The aim is to find the best coating candidates with high thermodynamic stability, high electrical conductivity and low cation diffusivity. In this context, you will join the LM2T team within the DIADEM Project (https://www.diadem.cnrs.fr/2023/03/29/atherm_coat/) for innovative materials.
Your role will be to:
1)Perform thermodynamic simulations using CALPHAD method and Thermo-Calc Software to predict the stability range of a set of coating candidates (e.g. spinel oxides and perovskites) and the possible decomposition reactions in different atmosphere conditions (temperature and oxygen partial pressure). In this step, the candidate will also perform a critical review of the thermodynamic data available in the literature.
2)To couple information obtained from CALPHAD calculations and the thermodynamic database to estimate the thermal expansion and electrical conductivity of the most promising compositions.
The candidate will work closely with the experimental team (ISAS/LECNA and UMR-IPV) producing the coatings to guide future trials and adapt the method to better meet large-scale production needs.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de recherche en Corrosion et Comportement des Matériaux
Laboratoire de Modélisation, Thermodynamique et Thermochimie
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down