Distributed fiber optic sensor for hydrogen leak detection

Hydrogen technologies are among the most promising low-carbon energies, and it fits perfectly the context of ecological transition. Carbon-free hydrogen represents a greener and more sustainable alternative to the batteries currently used for energy storage. There is a huge interest in optimizing the procedure for hydrogen production, use, and storage. This subject represents a particular interest for the CEA, EDF, and ORANO through several projects such as PEPR-H2 and udd@Orano. However, only a few works are carried out within the safety improvement framework of this energy production, transport, and use structures of this energy. Hydrogen leaks can represent a very high risk of a serious accident. In this project, we bring together several CEA departments expertise to develop a new hydrogen leak detection technology that can meet these major challenges. The combination of a simple chemical reaction (exothermic reaction) with distributed fiber optic sensors allows the creation of a new generation of hybrid sensors. These sensors use a reagent that heats up in the presence of hydrogen, leading to a temperature rise, which can be detected easily using an optical fiber distributed sensor. This measurement is characterized by high precision (can measure temperature variations of about 0.5 °C) with spatial resolutions that can reach the millimeter. These sensors will allow the monitoring of production lines, transport circuits, storage containers, etc., and provide real-time information on any containment system failure. Which will allow the localization of leaks with greater precision than the existing sensors. The low energy input (a few mW) and the absence of electronics reduce the risk of sparking, which makes the sensor functional and safe, even in the presence of high concentrations of hydrogen.

Post-doctoral position in Solid State Electrochemistry / Ceramic and metallic materials / High temperature corrosion

High-temperature electrochemical solid oxide (SOC) devices (650-850 °C) are considered as one of the most promising technologies thanks to various advantages such as a high efficiency, a relative low cost and a good reversibility in fuel cell (SOFC) and electrolysis (SOEC) operating modes. To better understand and limit metallic interconnect oxidation and chromium evaporation through the use of coatings remains a key challenge for the optimization of the system durability in SOFC and SOEC operation (degradation rate 3000 h). The post-doctoral work represents the main part of this project and is exclusively funded by it. The evaluation of protective coatings and a contact layer will be mainly performed thanks to electrochemical characterizations of performances and durability of the adjacent cell, and post-test microstructural characterizations as well compared to the bare steel. This work should lead to at least 1 publication and 1 presentation at EFCF conference in 2026.

MULTI-CRITERIA ANALYZES OF HYDROGEN PRODUCTION TECHNOLOGIES BY ELECTROLYSIS

LITEN, strongly involved in electrolysis technologies, wishes to compare via a multi-criteria analysis all electrolysis technologies currently available commercially (AEL, PEMEL), in the pre-industrialization phase (SOEL), or in R&D (AEMEL and PCCEL).
Our previous studies were based on specific use cases (fixed hypotheses on the size of the factory, the source of electricity, the technology, etc.).
The objective of this new work is to be able to position the different electrolysis technologies according to parameters which will be defined at the start of the project, these parameters being of a contextual type (e.g. number of operating hours, expected flexibility), technical ( ex yield, lifespan) or technical-economic (ex CAPEX OPEX) and environmental (ex GHG impacts, materials). The aim here will be to develop an original methodology which makes it possible to define the areas of relevance of each of the electrolysis technologies according to these parameters, depending for example on the cost of the hydrogen produced and its environmental impact

HPC simulations for PEM fuel cells

The goal is to improve TRUST-FC software -a joint development between LITEN and DES institutes at CEA- for detailed full 3D simulation of hydrogene PEM fuel cells and to run simulations on whole real bipolar plate geometries. Funded by AIDAS virtual lab (CEA/Forshungs Zentrum Juelich), a fully coupled electro-chemical, fluidic and thermal model has been built, based on CEA software TRUST. The model has been benchmarked against its FZJ counterpart (Open fuelcell, based on OpenFoam). The candidate will adapt the software and toolchain to larger and larger meshes up to billion cells meshes required to model a full bipolar plate. Besides, he will introduce two phase flow models in order to address the current technological challenges (local flooding or dryout). This ambitious project is actively supported by close collaboration with CEA/DES and FZJ.

Simulation of PEMFC flooding phenomena

The proton exchange membrane fuel cell (PEMFC) is now considered as a relevant solution for carbon-free electrical energy production, for both transport and stationary applications. The management of the fluids inside these cells has a significant impact on their performance and their durability. Flooding phenomena due to the accumulation of liquid water are known to impact the operation of the cells, causing performance drops and also damages that can be irreversible. With the use of thinner channels in ever more compact stacks, these phenomena are becoming more and more frequent. The objective of this post-doc is to progress in the understanding of flooding in PEMFCs. The work will consist in analyzing the link between the operating conditions, the design of the channels and the materials used in the cell. It will be based on a two-phase flow modeling approach at different scales, from the local scale at the channel-rib level, up to, via an upscaling approach, the level of the complete cell. The study will also be based on numerous experimental results obtained at the CEA or in the literature.

Thermodynamic modelling of protective coating for solid oxide electrolysis cells

In the pursuit of a sustainable energy future, solid oxide electrolysis cells (SOECs) are a highly promising technology for producing clean hydrogen by electrolysis of water at high temperature (between 500 and 850°C). Although high operating temperature offers many benefits (high efficiency and low power consumption), it can lead to degradation of the interconnectors. Coatings are proposed to improve the long-term performance of interconnectors and reduce corrosion problems. The aim is to find the best coating candidates with high thermodynamic stability, high electrical conductivity and low cation diffusivity. In this context, you will join the LM2T team within the DIADEM Project (https://www.diadem.cnrs.fr/2023/03/29/atherm_coat/) for innovative materials.
Your role will be to:
1)Perform thermodynamic simulations using CALPHAD method and Thermo-Calc Software to predict the stability range of a set of coating candidates (e.g. spinel oxides and perovskites) and the possible decomposition reactions in different atmosphere conditions (temperature and oxygen partial pressure). In this step, the candidate will also perform a critical review of the thermodynamic data available in the literature.
2)To couple information obtained from CALPHAD calculations and the thermodynamic database to estimate the thermal expansion and electrical conductivity of the most promising compositions.
The candidate will work closely with the experimental team (ISAS/LECNA and UMR-IPV) producing the coatings to guide future trials and adapt the method to better meet large-scale production needs.

Production of green hydrogen and ammonia from offshore energy

This subject is dedicated to the high potential of offshore wind power in the high seas, where it seems extremely complicated and expensive to install an electric transmission to a continental grid. In addition, the IMO, a United Nation agency that is responsible for environmental impacts of ships, adopted ambitious targets to reduce greenhouse gas (GHG) emissions from marine shipping. The IMO plan regulates carbon dioxide (CO2 ) emissions from ships and requires shipping companies to halve their GHG emissions by 2050 (compared to 2008 levels).
Different ways are being explored in order to identify the best low-carbon fuel that will be able to power new marine propulsion systems without GHC emissions (and others polluants like Sox, Nox…).
Hydrogen combined with a fuel cell is a good option for small application (fishing boat…). However, issues associated with hydrogen storage and distribution (low energy density) are currently a barrier for its implementation for large and massive marine application which drivess 80–90% global trade, moving over 10 billion tonnes of containers, solid and liquid bulk cargo across the world’s oceans annually.
Hence, other indirect storage media are currently being considered. Of these, ammonia is a carbon free carrier which offers high energy density. First studies and demonstration projects show that it could be used as a fuel coupled with a new generation of high-temperature fuel cells (SOFC) or internal combustion engines.
This project focuses on the green ammonia production on a high seas platform including an offshore wind farm that use renewable electricity to first generate hydrogen from water (via electrolysis) and nitrogen from air and then combine both in a Haber-Bosch process to synthesize ammonia. The objective is to develop modeling tools (Modelica / Dymola environment) in order to build, simulate and optimize "wind to ammonia" systems and energy management solutions to minimize the production cost of ammonia.

Top