Developement of a simulation platform for the energy systems

The evolution of power systems towards smart-grids, including a high share of renewable generation which can be combined with storage systems, lead to an increased complexity for designing and optimizing these systems. This leads to a need for new modeling and simulation tools, which have to manage different energy sources, different energy vectors and different technologies for energy conversion. Moreover, such simulation tools will be used to optimize the system sizing and to design energy management strategies.
The objective of this project is to design the software architecture for the simulation platform, which will be in ad equation to the previously mentioned needs. Such software will be organized in order to maximize the transfer towards industrial partners. The software will be able to support multi-energy systems, and will leave the possibility for the user to implement its own component models or energy management strategies.
The project is focused on the simulation platform architecture, and on the architecture model. This architecture will be used as a base for the development of a software. The objective of the given project is not to cover all the applications but rather to validate the architecture through a given application.

Development of Monte-Carlo methods for the simulation of radiative transfer: application to severe accidents

This post-doctoral subject concerns the development of Monte-Carlo ray-tracing methods for modeling radiation heat transfer in the context of severe accidents. Starting from a well-developed software framework for Monte Carlo simulation of particle transport in the context of reactor physics and radiation protection, we will seek to adapt existing methods to the problem of radiative heat transfer, in a high-performance computing framework. To do this, we will develop a hierarchy of approximations associated with radiative heat transfer that are intended to allow the validation of simplified models implemented in the context of the numerical simulation of severe accidents in nuclear reactors. Focusing on algorithm and simulation performance, this work is intended to be a "proof of principle" of the possible software mutualization around the Monte-Carlo method for particle transport on the one hand and radiative heat transfer on the other hand.

Top