Development and characterization of an oxide/oxide composite material

Fiber-reinforced ceramic matrix composites (CMCs) are a class of materials that combine good specific mechanical properties (properties relative to their density) with excellent high-temperature resistance (> 1000 °C), even in an oxidizing atmosphere. They generally consist of a carbon or ceramic fiber reinforcement and a ceramic matrix (carbide or oxide).
The proposed study focuses on the development of a fabrication process for oxide/oxide CMCs with long and/or short fibers that possess suitable dielectric, thermal, and mechanical properties.

Study of the Thermodiffusion of Small Polarons in UO2

The position is published on the CEA website at the following address:
https://www.emploi.cea.fr/job/emploi-post-doctorat-etude-en-ab-initio-de-la-thermodiffusion-des-petits-polarons-dans-UO2-h-f_36670.aspx

Impact of Microstructure in Uranium Dioxide on Ballistic and Electronic Damage

During reactor irradiation, nuclear fuel pellets undergo microstructural changes. Beyond 40 GWd/tU, a High Burnup Structure (HBS) appears at the pellet periphery, where initial grains (~10 µm) fragment into sub-grains (~0.2 µm). In the pellet center, under high temperatures, weakly misoriented sub-grains also form. These changes result from energy loss by fission products, leading to defects such as dislocations and cavities. To study grain size effects on irradiation damage, nanostructured UO2 samples will be synthesized at JRC-K, using flash sintering for high-density pellets. Ion irradiation experiments will follow at JANNuS-Saclay and GSI, with structural characterizations via Raman spectroscopy, TEM, SEM-EBSD, and XRD. The postdoc project will take place at JRC-K, CEA Saclay, and CEA Cadarache under expert supervision.

Thermochemical and thermodynamic study of chloride molten salts

In today’s climate emergency, access to clean and cheap energy is more important than ever. Several ways have been envisaged for several years now, but a number of technological issues still need to be overcome before they can be put into practice, as they represent breakthroughts. Whether for energy storage than for fourth generation nuclear reactors, molten salt environment used as coolant and/or as fuel is highly corrosive requiring a complexe choice of structural materials.
The aim of this subject proposed in the Corrosion and Materials Behavior Section is to study in depth the chemical properties of different chloride molten salts : the basic ternary salt (NaCl-MgCl2-CeCl3) but also the corrosion/fission/activation products that can be produced (MxCly with M=Cr, Fe, Te, Nd, Ni, Mo,…). The activity coefficients and solubility limits of these metallic elements will be determined using various techniques such as electrochemistry and Knudsen cell mass spectrometry. If required, this study can be completed by the phase transition temperature and heat capacity measurements using differential scanning calorimetry.

Preparation and characterization of an oxide/oxide composite

Fiber-reinforced ceramic matrix composites (CMCs) are a class of materials that combine good specific mechanical properties (properties relative to their density) with resistance to high temperatures (> 1000 °C), even in oxidizing atmospheres. They are typically composed of a carbon or ceramic fiber reinforcement and a ceramic matrix (carbide or oxide.
The proposed study focuses on the development of a low-matrix oxide/oxide CMC with suitable dielectric, thermal, and mechanical properties.
This study will be conducted in collaboration with several laboratories at CEA Le Ripault.

Development of new Potassium-ion cells with high performances and low environmental impact

Lithium ion batteries are considered as the reference system in terms of energy density and cycle life and will play a key role in the energetic transition, especially concerning electric vehicles. However, such a technology involves the use of a large amount of critical elements and active materials are synthesised using energy intensive processes.
In this way, our team is developing a new Potassium-ion batteries technology with high performances but with a low environmental impact.
For this innovative and ambitious project, CEA-LITEN (one of the most important research institute in Europe) is looking for a talented post-doctoral researcher in material chemistry. The post-doctoral position is opened for a young researcher with a high scientific level, interested by valorising her/his results through different patents and/or scientific publications.

Influence of laser bandwidth and wavelength on laser plasma instabilities

As part of the Taranis project initiated by Thales and supported by BPI France and in collaboration with numerous scientific partners such as CEA/DAM, CELIA and LULI, work on target design and definition of the laser intended to energy production in direct drive will take place. A prerequisite for this work is to understand the laser-plasma interaction mechanisms that will occur when the laser is coupled with the target. These deleterious mechanisms for the success of fusion experiments can be regulated by the use of so-called “broadband” lasers. In addition, the choice of the laser wavelength used for the target design and the laser architecture must be defined. The objective of the postdoctoral position is to study the growth and evolution of these instabilities (Brillouin, Raman) in the presence of “broadband” lasers both from an experimental and simulation point of view, and thus to be able to define the laser conditions making it possible to reduce these parametric instabilities.

Cryogenic separation of gas mixture

Separation microsystem coupled to mass spectrometry for on-line purification and characterisation of nuclear samples

The miniaturisation of analytical steps commonly carried out in laboratories offers many advantages and particularly in the nuclear sector, where the reduction of material consumption and waste production is of major interest. In this context, one of our laboratory’s focus area is the miniaturisation of analytical tools, particularly chromatographic separation techniques. The aim of this project is to reduce the scale of the purification steps of nuclear samples by solid phase extraction chromatography, prior to the analytical processes. Obtaining these miniaturised extraction devices is based on the in situ synthesis and anchoring of monoliths, in the channels of cyclic olefin copolymer (COC) microsystems. Since this material is chemically inert, COC functionalisation strategies are currently under development to covalently graft reactive sites on its surface, before locally anchoring actinide-specific monoliths in the micro-channels. The aim is to design and fabricate chromatographic extraction microsystems in COC, and to implement them for chemical purification and mass spectrometry measurements, both off-line and on-line.

Experimental and technological developments of a process for the mineralization of organic liquid waste by plasma

The ELIPSE process developed at the CEA allows the destruction of organic liquids by injection into a high-power plasma.
If the feasibility of destroying different organic components at flow rates of a few liters per hour has now been demonstrated, tests must now be further developed for reference organic liquids appropriately chosen according to existing deposits.
These studies, based on the characterization data of the chosen LORs, will aim to provide detailed process results obtained with the most representative operating conditions, to allow a complete and quantitative evaluation of the process. This will make it possible to establish operating, robustness and endurance data for the process.
This work will include the study of the behavior of radioelements in the process, which will be essential for the nuclearization study: this will involve studying the physico-chemical behavior of actinides during their processing via the use of inactive simulants.

Top