Quasi-particle finite amplitude method applied to the charge exchange process in nuclear strength function models
Quasi-particle finite amplitude method (QFAM) has become the tool of choice to perform fast and accurate calculations of the nuclear strength function. Such a method is particularly interesting when applied to deformed nuclei, where traditional approaches based on large-scale matrix diagonalizations becomes almost intractable.
The goal of the current project is to extend the QFAM code developed at CEA to allow for charge exchange process and to calculate rates of ß- decay for all medium-mass and heavy even-even nuclei between the valley of stability and the neutron drip line using the newly fitted Gogny interactions.
By creating a shared databases of ß- decay rates with collaborators working in other CEA research units, we will perform systematic comparison with existing data in order to identify possible outliers and/or discrepancies.
Influence of laser bandwidth and wavelength on laser plasma instabilities
As part of the Taranis project initiated by Thales and supported by BPI France and in collaboration with numerous scientific partners such as CEA/DAM, CELIA and LULI, work on target design and definition of the laser intended to energy production in direct drive will take place. A prerequisite for this work is to understand the laser-plasma interaction mechanisms that will occur when the laser is coupled with the target. These deleterious mechanisms for the success of fusion experiments can be regulated by the use of so-called “broadband” lasers. In addition, the choice of the laser wavelength used for the target design and the laser architecture must be defined. The objective of the postdoctoral position is to study the growth and evolution of these instabilities (Brillouin, Raman) in the presence of “broadband” lasers both from an experimental and simulation point of view, and thus to be able to define the laser conditions making it possible to reduce these parametric instabilities.
Evolution of ISAAC and Xpn codes for an extension of the QRPA method to the complete processing of odd nuclei; towards a database without interpolation for odd nuclei
The treatment of odd-isospin nuclei in microscopic approaches is currently limited to the so-called «blocking» approximation. In the Hartree-Fock Bogolyubov (HFB) approach, the ground state of an odd-mass nucleus is described as a one-particle excitation (qp) on its reference vacuum. Thus, in the QRPA approach, where the basic excitations are states «with 2 quasi-particles», the blocked qp is excluded from the valence space under the Pauli exclusion principle. As a result, the chosen qp is a spectator and is not involved in the QRPA collective states. If the single nucleon should have a significant contribution some levels will not be reproduced. The development in the QRPA codes (ISAAC and Xpn) of a procedure that allows all nucleons to participate in collective states is mandatory for a microscopic description of odd nuclei. Moreover, recent Xpn developments have allowed the description of forbidden ß- first decays improving the estimation of half-life time of fission fragments. This could be extended to address ß+ and electronic captures and could be adapted to large-scale calculations useful for nuclear astrophysics.
Development of a new spectrometer for the characterization of the radionuclide-based neutron sources
Since few years, the LNHB is developing a new instrument dedicated to the neutron spectrometry, called AQUASPEC. The experimental device consists of a polyethylene container that is equipped with a central channel accommodating the source and 12-measurement channels (in a spiral formation) around the source, into which detectors can be placed. The container is filled with water in order to moderate neutrons emitted from the source. Measurements have performed with 6Li-doped plastic scintillators, optimized for the simultaneous detection of fast neutrons, thermal neutrons and gamma rays through the signal processing based on pulse shape discrimination (PSD). The spectrum reconstruction is performed with an iterative ML-EM or MAP-EM algorithm, by unfolding experimental data through the detector's responses matrix calculated with MCNP6 code. The candidate will work in the general way on issues related to the neutron spectrometry in the laboratory: Contribution to the development and validation of the new spectrometer AQUASPEC; Participation to the sources measurements and working on aspects of neutron detection and signal processing, in particular issue of the discrimination of neutron/gamma based on the pulse shape discrimination technique (PSD); Usage of Monte Carlo simulation codes and algorithms to reconstruct initial neutron energy distribution; Investigation and integration of information related to neutron/gamma coincidence specific to the XBe type sources.
Numerical studies of laser plasma interaction in intermediate field on Laser Megajoule
In the Inertial Confinement Fusion experiments (ICF), intense laser beams cross a gas filled hohlraum. The gas is fully ionized and laser beams then propagate into a sub-critical plasma where laser plasma instabilites can develop. Optical smoothing techniques enable to break both spatial and temporal coherences so that both spatial and temporal scales of the beam become smaller than those required for the development of the instabilites. The breaking of spatial coherence is done thanks to the use of a phase plate which spreads the laser energy in a multitude of light grains called speckles. The breaking of temporal coherence is done by using a phase modulator which widens the spectrum and by dispersing each frequency with a grating. It is essential to know the statistical properties of speckles (width, lenght, contrast, coherence time, velocities ...) to be able to predict the instabilities levels which can depend on time and on the distance of propagation of the beam. .
For the sake of simplicity, the laser plasma instabilities are very often studied at the best focus of the beam. However, in the FCI experiments, laser beams are focused near the laser entrance hole of the hohlraum whose length is about 1 cm. The development of instabilities can then occur before the best focus (outside the hohlraum) and mainly beyond the best focus (far inside the hohlraum). The goal of this post-doctoral contract is to study the development of instabilities when it occurs in the intermediate field (far from the best focus of the beam) and to assess the efficiency of different smoothing options on Lase MagaJoule (LMJ) to limit these instabilities. We will especially study propagation instabilities (self-focusing, forward stimulated Brillouin scattering) and stimulated Brillouin backscattering. This work will be done thanks to numerous existing numerical codes and diagnostic tolls.
Minimizing the laser imprint through machine learning within the frameword of inertial confinement fusion
The postdoc will be based at the CELIA laboratory which develops studies on different patterns of inertial fusion by laser. In order to optimize the implosion of the target, the laser pulse is shaped spatially and temporally, in particular by a pre-pulse of a hundred picoseconds and intensity of a few hundred TW /cm2. However, the latter introduces spatial inhomogeneities to the surface and volume of the target, amplified by the initial solid behavior of matter. These fingerprints generated by the pre-pulse will degrade the symmetry of the target during its implosion, and therefore decrease the effectiveness of inertial confinement. At present, most models assume a plasma state from the beginning of the interaction, and are thus unable to account for certain experimental observations. To overcome this lack, we have just developed an original multi-physics simulation tool that includes the phase transition of a homogeneous material induced by the laser. In order to mitigate the laser imprint effect, a polystyrene foam (heterogeneous material) can be deposited on the surface of the target. The multiple optical reflections in the foam smooth the spatial profile of laser intensity, thus reducing absorption inhomogeneities. In order to reduce the influence of the laser fingerprint, the post-doctoral fellowship will aim to develop a microscopic model describing the evolution of the optical response of a foam during the solid-to-plasma transition. The first step of the work will be to couple the Helmholtz equation (describing laser propagation) to a solid transition model-plasma, and to study the influence of parameters. The second step will be to use an artificial intelligence algorithm (neural network) to optimize the optical response of the foam.
Development of a modular multi-detector instrumentation for the measurement of atomic and nuclear parameters
The LNE PLATINUM project (PLATFORM OF MODULAR NUMERICAL INSTRUMENTATION) aims to develop a modular platform, in order to test new instrumentation using two or more detectors in coincidence. The principle implemented in this project is based on the simultaneous detection of interactions taking place in two different detectors, by collecting information on the type of particle and its energy (spectroscopy). This principle is the basis for absolute measurements of activity or active continuous background reduction systems to improve detection limits. But it also allows the measurement of parameters characterizing the decay scheme, such as internal conversion coefficients, X-ray fluorescence yields or angular correlations between photons emitted in cascade.
Thanks to its expertise in atomic and nuclear data, the LNHB has noted for many years the incompleteness of decay schemes for certain radionuclides. These schemes, established at the time of evaluation from existing measured data, sometimes present inconsistencies or poorly known transitions, in particular in the presence of highly converted gamma transitions or very low intensity (for example, recent studies on 103Pa, 129I and 147Nd have revealed such inconsistencies). It therefore appears important for LNHB to better master the technique of coincidence measurement, taking advantage of the new possibilities in terms of data acquisition and time stamping to provide additional information on decay scheme and contribute to their improvement.
Development of multiphysics tools dedicated to the modeling of FSR and associated studies.
The sodium group of DM2S (department of CEA Saclay) develops numerical coupling tools in order to realize accidental case studies (fast transient). The physical domains concerned are neutronics, thermo-hydraulics and mechanics. The subject of this post-doc deals within this framework.
The aim is to carry out several studies: the integration of a coupling within the CORPUS platform, to carry out studies in order to test (and introduce) in the coupling the impact of the deformation of the assemblies by the Temperature on the flow of liquid sodium, the use of the neutronic cross sections generated by the code APOLLO3, the study of other accidental cases, and extend the modeling to the subchannel and pin scales.