Development of piezoelectric resonators for power conversion

CEA-Leti has been working to improve energy conversion technologies for over 10 years. Our research focuses on designing more efficient and compact converters by leveraging GaN-based transistors, thereby setting new standards in terms of ultra-fast switching and energy loss reduction.
In the pursuit of continuous innovation, we are exploring innovative paths, including the integration of piezoelectric mechanical resonators. These emerging devices, capable of storing energy in the form of mechanical deformations, offer a promising perspective for increased energy density, particularly at high frequencies (>1 MHz). However, the presence of parasitic resonance modes impacts the overall efficiency of the system. Therefore, we are in need of an individual with skills in mechanics, especially in vibrational mechanics, to enhance these cleanroom-manufactured micromechanical resonators.
You will be welcomed in Grenoble within a team of engineers, researchers and doctoral students, dedicated to innovation for energy, which combines the skills of microelectronics and power systems from two CEA institutes, LETI and LITEN, close to the needs of the industry (http://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/electronique-puissance.aspx).
If you are a scientifically inclined mind, eager to tackle complex challenges, passionate about seeking innovative solutions, and ready to contribute at the forefront of technology, this position/project represents a unique opportunity. Join our team to help us push the boundaries of energy conversion.

References : http://scholar.google.fr/citations?hl=fr&user=s3xrrcgAAAAJ&view_op=list_works&sortby=pubdate

Non-volatile asynchronous magnetic SRAM design

In the applicative context of sensor nodes as in Internet of things (IoT) and for Cyber Physical Systems (CPS), normally-off systems are mainly in a sleeping state while waiting events such as timer alarms, sensor threshold crossing, RF or also energetic environment variations to wake up. To reduce power consumption or due to missing energy, the system may power off most of its components while sleeping. To maintain coherent information in memory, we aim at developing an embedded non-volatile memory component. Magnetic technologies are promising candidates to reach both low power consumption and high speed. Moreover, due to transient behavior, switching from sleeping to running state back and forth, asynchronous logic is a natural candidate for digital logic implementation. The position is thus targeting the design of an asynchronous magnetic SRAM in a 28nm technology process. The memory component will be developed down to layout view in order to precisely characterize power and timing performances and allow integration with an asynchronous processor. Designing such a component beyond current state of the art will allow substantial breakthrough in the field of autonomous systems.

Top