Development of lead free piezoelectric actuator

At CEA-Tech, the LETI Institute creates innovation and transfers it to industry. The micro-actuator component laboratory (LCMA) is working on the integration of piezoelectric materials into microsystems that allow electromechanical transduction. Lead zirconate titanate (PZT) is today the most powerful piezoelectric material for micro-actuator applications. However, the introduction in the near future of a new standard regarding the lead amount allowed in chips (European RoHS directive) leads us to evaluate alternative lead-free materials to PZT for piezoelectric actuator applications. The development of lead-free materials has thus become a major focus of piezoelectric research. This research led to revisit and modify some classical piezoelectric such as KNbO3 and BaTiO3. In particular, the KNaxNb1-xO3 (KNN) family has been identified as promising. The objective of the postdoc is therefore to evaluate some lead-free piezoelectric materials and to compare their properties with that of the reference material, PZT. Suitable test vehicles will be fabricated in LETI’s clean rooms for electrical and piezoelectric characterizations by mean of dedicated tools already available at lab. For this work the candidate will lean on a solid experience developed at LETI for more than 20 years on piezoelectric thin films.

Development of multiphysics tools dedicated to the modeling of FSR and associated studies.

The sodium group of DM2S (department of CEA Saclay) develops numerical coupling tools in order to realize accidental case studies (fast transient). The physical domains concerned are neutronics, thermo-hydraulics and mechanics. The subject of this post-doc deals within this framework.
The aim is to carry out several studies: the integration of a coupling within the CORPUS platform, to carry out studies in order to test (and introduce) in the coupling the impact of the deformation of the assemblies by the Temperature on the flow of liquid sodium, the use of the neutronic cross sections generated by the code APOLLO3, the study of other accidental cases, and extend the modeling to the subchannel and pin scales.

Study of substrate coupling in millimeter wireless circuits

The candidate will study substrate coupling in millimeter wireless circuit. He will demonstrate the influence of silicon substrate on millimeter circuit design
The first task will consist in establishing the state of the art of substrate reduction technics on millimeter chip. The influence between building blocks at layout level will be analyzed. Parasitic noise effects, frequency and power spurious will be studied with coupling substrate tool. Specifications for layout design in order to reduce spurious will be done, especially for power, analog and digital applications. A design methodology will be proposed with this results.

Development of a mechanical energy harvester based on a rotating machine architecture with permanent magnets

This Post-doc offer will be aimed at developing energy harvesters, and more especially electromagnetic energy harvesters with an operation mode close to the one of rotating machines with permanent magnets. The post-doc applicant will have a background in electrical engineering and an experience in rotating machines design, ideally, with permanent magnets.

The missions of the Post-doc applicant will be to:
1) Imagine and design small-scale innovative energy harvesters by exploiting the techniques used in rotating machines.
2) Model and optimize the devices
3) Characterize the systems
4) Participate to the industrialization process

Bio-compatible, bio-resorbable microbatteries for medical applications

In the framework of its activities dedicated to embedded micro-batteries, LETI initiates prospective research in the field of micro-batteries for medical applications, and in particular as energy power sources for implantable micro-devices. In this context, a collaborative project, including LETI labs and an academic Partner (ICMCB, Bordeaux), is aiming at designing, manufacturing and studying prototypes of bio-resorbable primary microbatteries.
The main tasks will include (i) a contribution to the design of the thin film electrochemical cell by the selection of adequate biocompatible materials (able to generate the targeted electrical power, corrodible and able to solubilize in the body), (ii) the manufacture of the cell constituents (electrodes, electrolyte, substrate) as thin films (sputtering, electrochemical plating, doctor blade coating) and their characterization,(iii) the achievement of full prototype cells and the study of their in vitro behaviour.
The work will be carried out at ICMCB (Bordeaux) in a joint CEA/ICMCB team, in collaboration with LETI labs in Grenoble.

Design / Technology Co-Optimization of SRAM and standard cells on stacked nanowires at the 5nm technology node

The post-doctoral position will focus on the layout of SRAM and standard cells dedicated to the 5nm node on stacked nanowires integrating a Direct Self-Assembly solution (DSA). He/she will use the SPICE model developed at LETI and interact with both model and process/integration teams to find the best layout for a set of cells.

Optimisation of the monolithic cascode device based on GaN/Si MOS-Channel HEMT technology

In order to adress the requirements of power conversion in the field of electrical vehicule or photovoltaics, high performance GaN on Silicon power devices need to be developped. Such power devices must fulfill agressive specifications in terms of threshold voltage (> 2V), nominal current (100-200A), breakdown voltage (650 and 1200V) and stability (low "current collapse", low hysteresis). Discrete cascode configuration, consisting in a combination of a low voltage E-mode Silicon die and a hihg voltage D-mode GaN/Si die in a single package, has been developped by different laboratories and companies to adress this need (Transphorm, On-Semi, NXP, IR…). However, this approach has some drawbacks like parasitic inductances, device pairing, need of additionnal protection devices, cost, temperature limitation due to the Si die...
The monolithic cascode is a very compact version of the cascode configuration that will allow to avoid those problems but also to improve the performance of E-mode devices developped at Leti (MOS-channel HEMT). Indeed, some actors in the field of GaN power devices already use this configuration with another E-mode technology (p-GaN gate).
Monolithic cascode device has been demonstrated recently by CEA-Leti in the frame of a PhD thesis (2014-2016) on the basis of the 200mm GaN/Si, CMOS compatible, MOS-channel HEMT technology. The aim of this post-doc is to optimize the monolithic cascode structure in terms of On-state resistance, Figure Of Merit, switching losses and high switching frequency capability in order to meet the specifications of our industrial partners.

Frequency tunable elastic plate wave resonators and filters

The increasing number of frequency bands having to be dealt with in mobile phone systems require a huge number of band pass filters in such systems. In this context, the capability to provide frequency tunable resonators and filters is seen as a key enabling element in future wireless transmission systems.
CEA-LETI has been working for more than 10 years on the development of resonators and filters exploiting the propagation of guided elastic waves in piezoelectric thin films. It has also proposed several concepts for frequency agile resonators and filters.
The purpose of this post-doc will be to further develop these ideas and to apply them to the design of demonstrators matching realistic specifications. In collaboration with the other member of the project team, more focused on fabrication in clean rooms, the candidate will propose innovative structures demonstrating frequency tuning of reconfigurability, and will take in charge their electrical characterization.

Atomic sensors based on metastable 4He

Detection of weak magnetic fields opens the way to new techniques of medical imaging, geophysics and chemistry. Optically pumped magnetometers are currently the most accurate and precise sensors for magnetic fields [1]. Our lab works on optically-pumped magnetometers based on a thermal gas of helium-4 metastables, a spin-one electronic species. Our main achievement in last years has been the design and space qualification of the most recent generation of magnetometers available for spatial exploration, which were launched by ESA Swarm mission [2].
We are now starting a new project in order to explore further applications of magneto-optical effects of metastable helium. Indeed, dichroism and birefringence have been observed on 4He from the very first times of optical pumping [3] but, in strong contrast with alkali [4], the nonlinear regimes which can be reached from the introduction of 1083 nm lasers have been hardly studied. These regimes open new possibilities for realizing not only magnetometers but also other kind of useful sensors which address a broader range of industrial applications.
We are looking for a motivated postdoc candidate willing to work towards a better understanding of these effects but also towards harnessing them for building ultra-precise sensors. The applicant should have a PhD in physics, ideally with a good background in experimental atomic physics and/or laser physics. Our lab is well equipped and staff engineers will be available to assist the post doc on technical aspects related to optics, design of electronics and magnetic materials. The results will be divulgated in form both of journal publications and of patents.
[1] Kominis et al., Nature 422 (2003)
[2] http://smsc.cnes.fr/SWARM
[3] Laloë, Leduc, Minguzzi, Journal de Physique, 30 (1969)
S. Pancharatnam, J. Phys. B: At. Mol. Phys. 1 (1968).
[4] Budker et al., Rev. Mod. Phys. 74 (2002)

Wireless biological sensor using 2D materials (Graphene , Molybdenium disulfide)

The main goal of the post-doctoral position is the fabrication of a biological sensor using 2D materials and that can be remotely addressed thanks to a RF antenna simultaneously fabricated alongside the biosensor.
The post-doctoral associate will be in charge of the fabrication and characterization of the prototype. Starting from well-designed modelling, he/she will first establish a design architecture for the sensor and RF antenna. Once designed and sized, the post-doctoral associate will adapt existing transfer protocol of 2D materials to develop an innovative fabrication process for the sensor. He/she will then fabricate the first prototypes of the sensors. Consecutively he/she will validate first the remote addressing of the sensor via the RF antenna. Secondly he/she will lead biodétection tests to assess the sensitivity of the fabricated sensors. Finally, he/she will try to integrate Transition Metal Di-chalcogenides 2D materials (such as MoS2) to graphene sensors inside a hybrid 2D materials biological sensor. The goal here will be to boost operational sensitivity.

Top