INES is actually developping new fabrication technologies for n-type silicon solar cells. Working on simulation of photovoltaic solar cells enables the speed-up of the developement of new technologies: physical interpretation of characterisation results, support to device design, optimisation of processing steps and evaluation of original designs.
This subject open for post-doc position is focused on the study of semi-empirical models for materials and process steps for n-type solar cells. These basic road-blocks will be assembled in a complete model by using a multi-scale simulation tool. In the end, this global model will allow optimising of the p-type emitter geometrical structure, the efficiency of carrier collection on the back side or the geometry of metallisation for electrical contacts.
This project aims to establish a new research and development on purification devices for fuel reformers for hydrogen fuel cells. This work is of prime importance for fuel cell systems fed by different sources of hydrogen. Used in "power full" or "range extender" modes, the reformer and gas purification system are elements of the chain that have to be optimized.
Objective is to develop an electrochemical device for purifying the gas from a reformer whose basic principle is similar to that of a PEM electrolyzer. The gases from the reformer undergo a selective electrocatalytic oxidation to separate hydrogen and conventional pollutants directly power a fuel cell.
The project will focus on selection and characterization of catalysts electrocatalytic performance and the achievement of functional prototypes. These developments will assess the economic relevance of the device vis-à-vis other systems and identify areas of research to develop thereafter.
Frama-C is a set of tools dedicated
to the analysis of C software. In Frama-C, different analyses
techniques are implemented as plug-ins within the same framework.
Part of the glue that holds the various plug-ins together is
the ACSL annotation language. ACSL is a formal specification
language for C programs.
Each verification plug-in is supposed to interpret ACSL
annotations as best it can. A plug-in can also, when it needs to
make an assumption, express it as an ACSL property so that
another plug-in can be used to verify this assumption.
This post-doctoral position consists in improving the precision of Frama-C’s value analysis, based on Abstract Interpretation, for constructs that are not currently handled. The treatment of some constructs will require specific abstract domains to be designed.
http://frama-c.com
http://frama-c.com/value.html
http://frama-c.com/acsl.html
In an attempt to provide a rigorous physical-based description of the physicochemical phenomena occurring in the PEFC environments, the Modeling Group at CEA-Grenoble/LCPEM has developed a novel physical multi-scale theory of the PEFC electrodes electro-catalysis,the MEMEPhys model, based on a combined non-equilibrium thermodynamics/electrodynamics approach. This postdoctoral research position will consist on actively contributing on the development of the model, including the implementation of a physical-based description of water transport phenomena and water condensation in the PEFC. Heterogeneities on the electrochemical and aging processes, induced by water transport, will be in particular addressed. The candidate will strongly combine theoretical and experimental data, obtained in our laboratory, in order to establish MEA microstructure-performance relationships and to elucidate the main MEA degradation and failure mechanisms. From a fundamental point of view, this work will provide a deeper understanding of the electrochemical mechanisms responsible of the PEFC active layers aging at different spatiotemporal scales.
The objective of this study is to explore possibilities of using systems with fluidic/thermal coupling to harvest the thermal energy released by an electronic device and then convert it into electricity that can be stored or used again. In those systems, the fluidic can be also used for a cooling purpose.
The two main steps will be the design of devices allowing controlling the operating regimes of the fluidic system submitted to a constant heat source (thermo-fluidic coupling) and the characterization of the best coupling conditions with the electrical conversion devices, in particular piezo-electrical. The studies will also explore new mechanisms taking place in the small scale fluidic systems compared to models known macroscopically. The work will be mostly experimental but will also include a simulation part.
The study should also provide an estimation of the harvesting efficiency as well as the power densities taking place in this kind of new devices.
CEA contributes to R&D activities in 3rd generation biofuel production from micro-algae by its fundamental research in biology (understanding of biological mechanism and improvement of microorganism performances) led by DSV at CEA Cadarache. LITEN Institute, belonging to CEA/DRT, investigates 2nd biofuel generation, from studies on resources (biomass, waste) up to industrial, economical and environmental integration.
This post doc fellow will use the different approaches developed at LITEN/DTBH to :
- perform a prospective study on process integration, for biofuel production from micro-algae,
- realize a technico-economical study of the more promising process solutions in the 2rd generation domain and industrial use of micro-algae,
- estimate the environmental impact (especially CO2) of these processes.
This work will take place in in frame of a collaboration of both labs (DSV/IBEB and DRT/LITEN/DTBH), the first one bringing its very fundamental knowledge on technical ability and performance of the micro-organism, the second one giving the knowledge on process and technico-economical evaluation of industrial reactor systems.
The post doc fellow, located in Grenoble, will go as needed in Cadarache to discuss with biology experts.
The evolution of sub-micron technologies has induced tremendous challenges the designer has to face, namely, the Process-Voltage-Temperature varibility and the decrase of power consumption for mobile applications.
The work to be done here concerns the DVFS (Dynamic Voltage and Frequency Scaling) policies for GALS (Globally Asynchronous, Locally Synchronous) architecture.
A fine grain modelling of the voltage and frequency “actuators” must be first done in order to simulate in a realistic ways the physical phenomena. Especially, the various parameters that may influence the system will be considered (process variation, supply voltage variation and noise, temperature variation, etc.)
Then, Non-Linear (NL) control laws that take into account the saturation of the actuators will be developed. These laws will be validated on the physical simulator and their performances in regulation (i.e. the response of the closed-loop system to disturbances such as PVT variations) will be evaluated. Note that these laws will be designed at the light of implementation constraints (mainly cost) in terms of complexity, area, etc.
Actually, the system considered here is intrinsically a Multi-Inputs-Multi-Outputs (MIMO) one. Therefore, its control can be design with NL techniques devoted to MIMO systems in order to ensure the requirements and reject the disturbances.
The control of several Voltage and Frequency Islands (VFI) is usually done via a “central brain” that chooses the voltage and frequency references thanks to a computational workload deadline. For more advanced architectures, the capabilities of each processing element, especially its maximum frequency, can be taken into account. A disruptive approach should be to consider a more distributed control that for instance takes into account the particular state (e.g. temperature) of each VFI neighbours. Control techniques that have been designed for distributed Network Controlled Systems could be adapted to MPSoCs.
This post-doctoral offer is in support of our work program on the design of millimetre-wave antennas for high data rate communication systems in the 57-66 GHz frequency band. The realization of smart devices in this frequency band with a high level of integration and a low cost is a challenge accessible today thanks to the recent microelectronic technologies as well as other silicon technologies such as assembly, packaging or micromachining. Some applications in the consumer electronics domain are clearly identified and expected to result in product in a very short term.
After a series of project completed these last years on the design of single antennas built and validated on different technologies, such as silicon or ceramic, the future projects will focus on the demonstration of antenna arrays with electronic beamsteering for long range applications. Several demonstrators will be realized in collaboration with our partners developing the integrated circuits and fabrication/assembly technologies in order to obtain a fully functional system.