Large scale visual recognition

This post-doc deals with detection and recognition of objects in images and video streams, on a large scale. This is a fundamental task that is the subject of active research in the world, including recent challenges in the evaluation campaigns. The "large scale" aspect refer to both large size databases (eg ten million images) and large number of concepts to recognize (eg 100-10000).The work will concern bothimage description and classification.

At the description level, state of the art techniques rely on local descriptors, aggregated according to dictionaries of "visual words" possibly constructed using Fisher kernels. It is nevertheless necessary to recode these signatures effectively in order to manage large databases. Regarding learning of visual concepts or objects, many algorithms use SVM (support vector machines) but other approaches are sometimes considered, such as those based on boosting or logistic regression.

The proposed position involves research and development of efficient algorithms to find visual entities in very large databases. Tracks are considered and should be discussed with the candidate selected based on prior knowledge and technical discussions.

Deployment of distributed consensus protocols on blockchains with Smart Contract

The aim is to implement various distributed consensus protocols on both public and private blockchain platforms supporting Smart Contracts technology. The techniques based on Proof-of-Stake and token management will be analyzed and their level of security will be evaluated in terms of energy consumption and quality of the distribution of the trust in the system. The techniques to verify the transactions of the blockchain Ethereum will be implemented, as well as other algorithms, lighter and that consume less energy, dedicated to "private" blockchains where users are authenticated. The platform Hyperledger will be used to test the various distributed consensus protocols. New algorithms will be proposed and the solutions will be deployed for applications in the field of the Internet of Things.

In situ analytical device based on the LIBS technique for the characterization of hard environment liquid media

The proposed research project aims at developing an in situ analytical device based on the LIBS technique for the characterization of hard environment liquid media such as high temperature melting materials or highly volatile liquid metals used for development of low carbon energy production. The project involves two CEA teams specialized in LIBS instrumentation, analytical developments and high temperature environments.
At high temperature, the molten metals have a high surface reactivity leading to processes of oxidation, slagging … Non-intrusive analysis of this surface by traditional LIBS tools leads to a non-representative results of the molten metal chemical composition. In this project, a new-patented concept based on a mechanical stirring coupled to the LIBS device is developed in order to have a renewable and stable surface of the liquid metal. The aim is to have an on-line representative composition of the metal during the treatment process. The developed demonstrator will be validated for the analysis of impurities (at ppmw ranges) in liquid silicon (T> 1450 °C) during the purification process and the crystallization one for photovoltaic applications. At the end of the project, recommendations for in-situ analysis of liquid sodium (used as cooling fluid in nuclear reactors) will be given.

Machine learning technics and knowledge-based simulator combined for dynamic process state estimation

This project aims to estimate the real state of a dynamic process for liquid-liquid extraction through the real data record. Data of this kind are uncertain due to exogenous variables. They are not included inside the simulator PAREX+ dedicated to the dynamic process. So, the first part of the project is to collect data from simulator. By this way the operational domain should be well covered and the dynamic response recorded. Then, the project focuses to solve the inverse problem by using convolutionnal neural networks on times series. Maybe a data enrichment could be necessary to perfect zones and improve estimations. Finally, the CNN will be tested on real data and integrate the uncertainty inside its estimations.
At the end, the model built needs to be used in operational conditions to help diagnosis and improve the real-time control to ensure that the dynamic observed is the one needed.

Hydrothermal carbonization as a pretreatment of wastes before their thermochemical conversion by gasification

Gasification, a thermochemical transformation generally performed at about 850°C, produces a gas that can be valorised in cogeneration, or for the synthesis of chemical products or fuels. Some bottlenecks are still present mainly for the gasification of biogenic or fossil origin wastes: irregular feeding in the reactor due to the heterogeneity in form and composition; formation of inorganic gaseous pollutants (HCl, KCl, NaCl, H2S) or organic ones (tars), which are harmful for the process and/or decrease its efficiency, and must be removed before the final application.
The objective of the post-doctoral work will be to test and optimize a pre-treatment step of the resource based on hydrothermal carbonisation (HTC). This transformation is performed at 180-250°C, in a wet and pressurised environment (2-10 MPa). The principal product is a carbonaceous solid residue (hydrochar), that can be valorised by gasification. HTC aims to limit the release of inorganic and organic pollutants in gasification, and to homogenise and improve the physical properties of the resource.
The proposed approach will consist in: experimentations in batch reactors on pre-selected resources and model materials, together with quantification and analyses of products; analysis of results aiming at elucidating the links between the resource and the properties of the hydrochar, as a function of operating conditions; an evaluation of mass and energy balances for the HTC-gasification process.

Etudes sur la physique des gaz et des interactions matière/laser pour la démonstration à l’échelle laboratoire de l’épuration isotopique du palladium (naturel).

Le palladium est un métal rare dont la demande mondiale est en forte augmentation. Or, il est présent en tant que produit de fission dans les combustibles nucléaires usés qui sont retraités en France. Il serait donc intéressant de recycler ce métal. Pour cela, il est nécessaire de procéder à une épuration isotopique, afin de supprimer un des isotopes du palladium, le 107, qui est un radionucléide artificiel à vie longue émetteur béta. Dans le cadre d'un nouveau projet sur 4 ans construit en réponse à l'appel d'offre du Plan d'Investissement et d'Avenir de l’État, le Service d’Etude des Procédés d’Enrichissement propose un contrat post-doctoral ayant pour objectif la compréhension des interactions gaz/laser dans le procédé de séparation isotopique du palladium par Lasers actuellement en cours de développement. L’objectif principal du projet est la démonstration finale de la faisabilité de séparation de palladium naturel (et non radioactif) pour la phase suivante de développement d’un premier pilote.
Le post-doctorant devra en particulier assurer l’étude du mode de production de la vapeur atomique près du point de fusion du métal pur, des mesures de spectroscopie par laser dans l’UV afin d’affiner les séquences sélectives de photoionisation des isotopes désirés. Pour ce faire, il participera à la définition, au montage et au développement de l'évaporateur, et au couplage des lasers du procédé avec l’enceinte à vide. Des échanges seront mis en place sur ce sujet spécifique avec des spécialistes reconnus au sein de la Direction de la Recherche Fondamentale du CEA. Les mesures de diagnostics des lasers mais aussi les mesures provenant des interactions gaz/laser sont à développer. La programmation (en Python et/ou sous Labview) de ces outils est un point essentiel du poste proposé. Une attention particulière sera portée sur les publications à réaliser essentiellement dans le cadre des interactions gaz/laser (photoionisation sélective des atomes d’intérêt et extraction).

Design of a control system of a plane based on distributed electric propulsion

The objective of this post doctorate is to design a control system to manage the electrical power on an electric plane proposed by many electrical turbines. The aim of the work is to demonstrate the possibility to increase the propulsion efficiency by using many cooperative electrical turbines placed judiciously on plane compare to a plane having only two or four turbine. Furthermore, one idea is to completely drive the plane by adjusting in real time the power of each electrical turbine taking advantage of their high reactivity compare to classical thermal turbines. The background required for that post doctorate is a good knowledge in control system and power electronic.

Proton conducting interpenetrating polymer networks as new PEMFC membranes

This subject takes place in the frame of the development of proton exchange membrane fuel cells (PEMFC) and the main objective is to increase their performance and durability for operation above 100°C at low relative humidity.
The current standard membranes for use in PEMFC applications remain perfluorosulfonated ionomers such as Nafion® due their good proton conductivity and chemical stability. Nevertheless, their proton conductivity decreases for relative humidity below 70% especially at high temperature because of a too low density of proton conducting groups. This characteristic is a limitation for their use in the working conditions of the requirements for the automotive application. With these polymers, an increase of the proton conducting group density leads to a decrease of mechanical and dimensional stability. Yet, this stability is already quite low and decreases the PEMFC durability. The goal of this subject is to develop new membrane structures based on interpenetrating polymer networks that do not present this antagonism between good mechanical stability and proton conductivity. This strategy which has recently been patented by CEA (patent application number 08 06890) is based on the association of two entangled polymer networks, one sulfonated for proton conductivity and one fluorinated for mechanical and chemical stability.
The applicant will make the membranes and then will characterize their mechanical properties, proton conductivity as well as gas permeability. He will also quantify their performance and durability in a running fuel cell.

Electrical characterization of phase-change memories (PCM)

Main objectives of this postdoc position will be the electrical characterization in view of basic physical modelling of chalcogenide materials and integrated devices for application to sub-45nm embedded Phase-Change Non-Volatile Memories.
Electrical characterization (program dynamics, data-retention at different temperature, cycling, data-retention after cycling, disturb during cell reading and programming of nearby cells...) on test structures will be performed in order to put in evidence the main performances and degradation modes. Electrical characterization on blanket deposition will be operated as well, in order to assess the chalcogenide resistivity, crystallization temperature and thermal conductivity.
The postdoc will be involved in a detailed experimental work, but he will have also to face the theoretical principles governing the functionality of a Phase-Change Memory. In particular, the obtained experimental data will be coupled to a basic physical modeling of the chalcogenide materials integrated in the test structure, considering the electrical & thermal dynamics governing the phase change process of PCRAM devices.

Nanoimprint process development on flexible substrate for electronic and optical applications

This subject aims to develop specific nanoimprint processes for various materials and to apply them to the realization of various components on plastic film. Several themes will be addressed through different materials, on the substrate itself or on a more or less thin layer deposited on a flexible plastic film. An incomplete list of these materials is presented below. They correspond to various potential applications. In the field of electronics, printing processes of dielectric materials will be studied. Particular substrates are also pressed for the creation of OTFT. In the field of optics, the structuring of several conducting polymers with special optical properties is considered for various applications. Some of these polymers belong to the family of PEDOT used also in the field of photovoltaics. The multilayer structure of polymers will be explored for the realization of 3D structures.
Finally, the ability to print polymer films loaded nanoparticles will also analyzed.

Top