Calibration of the high dose rate flash therapy beam monitor of the IRAMIS facility
Ultra-flash beams are pulsed beams of high-energy electrons (over a hundred MeV) with pulse durations in the femto-second range. The IRAMIS facility (CEA Saclay) uses laser acceleration to produce this type of beam, with a view to their application in radiotherapy. The LNHB is in charge of establishing dosimetric traceability for the IRAMIS facility, and to do this it has to calibrate the facility's monitor. Current radiotherapy facilities are based on medical linear accelerators operating at energies of up to 18 MeV in electron mode. LNHB has such equipment. It is used to establish national references in terms of absorbed dose to water, under the conditions of the IAEA protocol TRS 398.
Establishing dosimetric traceability involves choosing the measurement conditions, knowing the transfer dosimeter characteristics used and any corrections to be applied to the measurements taking into account the differences between the IRAMIS Facility and those of LNHB.
Separation microsystem coupled to mass spectrometry for on-line purification and characterisation of nuclear samples
The miniaturisation of analytical steps commonly carried out in laboratories offers many advantages and particularly in the nuclear sector, where the reduction of material consumption and waste production is of major interest. In this context, one of our laboratory’s focus area is the miniaturisation of analytical tools, particularly chromatographic separation techniques. The aim of this project is to reduce the scale of the purification steps of nuclear samples by solid phase extraction chromatography, prior to the analytical processes. Obtaining these miniaturised extraction devices is based on the in situ synthesis and anchoring of monoliths, in the channels of cyclic olefin copolymer (COC) microsystems. Since this material is chemically inert, COC functionalisation strategies are currently under development to covalently graft reactive sites on its surface, before locally anchoring actinide-specific monoliths in the micro-channels. The aim is to design and fabricate chromatographic extraction microsystems in COC, and to implement them for chemical purification and mass spectrometry measurements, both off-line and on-line.
Development of a simulation tool for the pitting process of a stainless steel used for the storage of nuclear waste
Structural nuclear waste is compacted in patties, stacked in a stainless steel container. In these compacting boxes are placed various metal-type materials with the addition of organic matter, including chlorinated waste. By radiolytic degradation, these can lead to the formation of hydrogen chloride HCl. During the storage phase, relative humidity may be present within the container, which, added to the HCl, may lead to a phenomenon of condensation, resulting, on the surface of the materials, of acid and concentrated into chloride ions condensates. In contact with this acid and chloride electrolyte, a pitting phenomenon is likely to begin on the surface of a stainless steel. This is a local phenomenon that can lead to the piercing of the material in extreme cases. The initiation of this phenomenon depends on several factors: the morphology of the electrolyte, its composition and its evolution over time.
If nowadays this phenomenon is well known, modeling it remains a major challenge because it is a coupled multi-physics and multi-parameter problem. Many questions remain open, particularly at the level of the physical and chemical laws to be used or how to represent the corrosion process?
The objective of the post-doctorate is to develop a tool under COMSOL capable of simulating the initiation and the evolution over time of a pit on the surface of a stainless steel. The approach will be based on a mechanistic modeling of the processes (material transport process and all the chemical and electrochemical reactions).
The post-doctorate will take place in several actions:
1- make a state of the art of the bibliography in order to understand the pitting phenomenon and to identify the laws necessary for modeling.
2-simulate the spread of the pit in a chloride environment in order to establish a propagation criterion.
3-the pitting initiation will be implemented in order to obtain a complete tool capable of simulating the pitting process
Optimization of a metrological approach to radionuclide identification based on spectral unmixing
The Laboratoire national Henri Becquerel (LNE-LNHB) at CEA/Saclay is the laboratory responsible for French references in the field of ionizing radiations. For several years now, it has been involved in the development of an automatic analysis tool for low-statistics gamma spectra, based on the spectral unmixing technique. This approach makes it possible to respond to metrological constraints such as robust decision-making and unbiased estimation of counts associated with identified radionuclides. To extend this technique to field measurements, and in particular to the deformation of spectra due to interactions in the environment of a radioactive source, a hybrid spectral unmixing model combining statistical and automatic learning methods is currently being developed. The aim of this mathematical solution is to implement a joint estimation of the spectra measured and the counts associated with the radionuclides identified. The next step will be to quantify the uncertainties of the quantities estimated from the hybrid model. The aim is also to investigate the technique of spectral unmixing in the case of neutron detection with a NaIL detector. The future candidate will contribute to these various studies in collaboration with the Laboratoire d'ingénierie logicielle pour les applications scientifiques (CEA/DRF).
Postdoc in Multi-instrumented operando monitoring of Li-ion battery for ageing
Nowadays, the development of new battery technology requires increasing the knowledge of degradation mechanisms occur inside the cell and monitor the key parameter in real time during cycling to increase the performances, lifetime and safety of the cells. To achieve these goals development of new sensing technology and integration inside and outside the cell is needed. The goal of the SENSIGA project is used advanced sensing technology to improve the monitoring of the cell by acquiring useful data correlate to the degradation process and develop more efficient battery management system with accurate state estimators. SENSIGA is a part of PEPR Batteries lead by CNRS and CEA and funding by the French Research Programme FRANCE 2030 to accelerate the development of new battery technology.
You will have the opportunity to work in a stimulating scientific environment focusing on the characterisation of both state of the art and latest generations of battery materials. Based on the sensing technology developed at CEA and from the state of the art, the SENSIGA project will reach the objective of the BATTERY2030+ roadmap goals for smart cells (https://battery2030.eu/research/roadmap/). One of the objectives of the project is to use external sensors to monitor the key parameters of the cell related to performances, ageing and safety behaviours.
Development of Algorithms for the Detection and Quantification of Biomarkers from Voltammograms
The objective of the post-doctoral research is to develop a high-performance algorithmic and software solution for the detection and quantification of biomarkers of interest from voltammograms. These voltammograms are one-dimensional signals obtained from innovative electrochemical sensors. The study will be carried out in close collaboration with another laboratory at CEA-LIST, the LIST/DIN/SIMRI/LCIM, which will provide dedicated and innovative electrochemical sensors, as well as with the start-up USENSE, which is developing a medical device for measuring multiple biomarkers in urine.
Earthquake effect on underground facilities
The Industrial Centre for Geological Disposal (Cigeo) is a project for a deep geological disposal facility for radioactive waste to be built in France. These wastes will be put in sealed packages in tunnels designed at 500 meters depth. The seals are made of a bentonite/sand mixture which has a high swelling capacity and a low water permeability. As a part of the long-term safety demonstration of the repository, it must be demonstrated that the sealing structures can fulfill their functions under seismic loads over their entire lifetime. In order to guarantee this future nuclear waste repository, CEA and Andra are collaborating to work on the potential scientific and engineering challenges involved.
The responses of underground repository to earthquake events are complex due to the spatially and temporally evolving hydro-mechanical properties of the surrounding media and the structure itself. Accurate modeling of the behavior, therefore, requires a coupled multiphysics numerical code to efficiently model the seismic responses for these underground repositories within their estimated lifespan of 100 thousand years.
The research will therefore, propose a performance assessment for sequential and parallel finite element numerical modeling for earthquake analysis of deep underground facilities. Then perform a synthetic data sampling to account for material uncertainties and based on the obtained results in the previous assessment, run a sensitivity analysis using a FEM or a metamodeling process. Finally, the results and knowledge gained within the span of this project will be processed and interpreted to provide responses for industrial needs.
Experimental and technological developments of a process for the mineralization of organic liquid waste by plasma
The ELIPSE process developed at the CEA allows the destruction of organic liquids by injection into a high-power plasma.
If the feasibility of destroying different organic components at flow rates of a few liters per hour has now been demonstrated, tests must now be further developed for reference organic liquids appropriately chosen according to existing deposits.
These studies, based on the characterization data of the chosen LORs, will aim to provide detailed process results obtained with the most representative operating conditions, to allow a complete and quantitative evaluation of the process. This will make it possible to establish operating, robustness and endurance data for the process.
This work will include the study of the behavior of radioelements in the process, which will be essential for the nuclearization study: this will involve studying the physico-chemical behavior of actinides during their processing via the use of inactive simulants.
Aqueous alteration of nuclear glass in its disposal environment
Exploitation, characterization and modeling of so-called "integral" experiments of glass alteration intended for the confinement of nuclear waste (SON68 and AVM4) in the presence of iron, cementitious material and argillite from the Bure site in two geometrical configurations: one simulating a disposal cell, the other intimately mixing the materials present. These tests were launched on behalf of ANDRA between 2017 and 2018 and their characterization started in the past two years.
Thermodynamic investigation of Metal-Insulator-Transition materials – The case of doped VO2 for smart windows applications
The present post-doc proposal aims to develop a specific thermodynamic database on the V-O-TM (TM=Fe,Cr) system by using the CALPHAD approach. The candidate will conduct experimental campaigns to obtain relevant data to feed the thermodynamic models. The candidate will mostly use the experimental equipment available at the lab (DTA, annealing furnaces, high temperature mass spectrometry, laser heating, SEM-EDS). In addition, the post-doc may participate to combinatorial high-throughput activities led by other laboratory of the Hiway-2-Mat consortium (e.g., ICMCB in Bordeaux), allowing a better connection between the CALPHAD simulation output and the accelerated characterization platform. The thermodynamic database will be then included in the autonomous research routine implemented in the material exploration path.