Numerical studies of laser plasma interaction in intermediate field on Laser Megajoule

In the Inertial Confinement Fusion experiments (ICF), intense laser beams cross a gas filled hohlraum. The gas is fully ionized and laser beams then propagate into a sub-critical plasma where laser plasma instabilites can develop. Optical smoothing techniques enable to break both spatial and temporal coherences so that both spatial and temporal scales of the beam become smaller than those required for the development of the instabilites. The breaking of spatial coherence is done thanks to the use of a phase plate which spreads the laser energy in a multitude of light grains called speckles. The breaking of temporal coherence is done by using a phase modulator which widens the spectrum and by dispersing each frequency with a grating. It is essential to know the statistical properties of speckles (width, lenght, contrast, coherence time, velocities ...) to be able to predict the instabilities levels which can depend on time and on the distance of propagation of the beam. .
For the sake of simplicity, the laser plasma instabilities are very often studied at the best focus of the beam. However, in the FCI experiments, laser beams are focused near the laser entrance hole of the hohlraum whose length is about 1 cm. The development of instabilities can then occur before the best focus (outside the hohlraum) and mainly beyond the best focus (far inside the hohlraum). The goal of this post-doctoral contract is to study the development of instabilities when it occurs in the intermediate field (far from the best focus of the beam) and to assess the efficiency of different smoothing options on Lase MagaJoule (LMJ) to limit these instabilities. We will especially study propagation instabilities (self-focusing, forward stimulated Brillouin scattering) and stimulated Brillouin backscattering. This work will be done thanks to numerous existing numerical codes and diagnostic tolls.

Natural convection at high Ra numbers for nuclear safety: 2nd year

Thermal exchanges at very high Rayleigh numbers (Ra) exist on geophysical scale, at civil engineering scale and increasingly in industrial applications and here particularly in the energy sector. At this point, we mention the cooling of solar panels or the heat removal from nuclear power plants under accidental conditions. In fact, the passive safety concept of Small Modular Reactors (SMR) is based on the transfer of residual heat from the reactor to a water pool in which the reactor is placed. Since the outer reactor vessel is very high, heat exchange occurs by natural convection at Rayleigh numbers (Ra) between 1010 and 1016. Reliable heat transfer correlations exist to date only up to about Ra < 1012 with very high uncertainties in the extrapolation to higher Ra. Understanding the heat transfer at very high Ra is thus of fundamental and practical interest. The associated challenges are twofold:
• Numerical challenges: CFD codes cannot model turbulent heat transfer at very high Ra with sufficient accuracy and appropriate calculation time. Improved physical and numerical models are required, which use high performance computing (HPC) capabilities.
• Experimental challenges: Detailed experiments are essential for code validation. Since experiments in water require impractical huge dimensions, cryogenic experiments with helium are planned at CEA, based on the interesting physical properties of this fluid in the range of 5 K (high thermal expansion associated to low viscosity and thermal conduction).

Construction of a digital model at the mesoscopic scale of macroscopic composite parts

NA

Simulation of a porous medium subjected to high speed impacts

The control of the dynamic response of complex materials (foam, ceramic, metal, composite) subjected to intense solicitations (energy deposition, hypervelocity impact) is a major issue for many applications developed and carried out French Atomic Energy Commission (CEA). In this context, CEA CESTA is developing mathematical models to depict the behavior of materials subjected to hypervelocity impacts. Thus, in the context of the ANR ASTRID SNIP (Numerical Simulation of Impacts in Porous Media) in collaboration with the IUSTI (Aix-Marseille Université), studies on the theme of modeling porous materials are conducted. They aim to develop innovative models that are more robust and overcome the theoretical deficits of existing methods (thermodynamic consistency, preservation of the entropy principle). In the context of this post-doc, the candidate will first do a literature review to understand the methods and models developed within IUSTI and CEA CESTA to understand their differences. Secondly, he will study the compatibility between the model developed at IUSTI and the numerical resolution methods used in the hydrodynamics computing code of the CEA CESTA. He will propose adaptations and improvements of this model to take into account all the physical phenomena that we want to capture (plasticity, shear stresses, presence of fluid inclusions, damage) and make its integration into the computation code possible. After a development phase, the validation of all this work will be carried out via comparisons with other existing models, as well as the confrontation with experimental results of impacts from the literature and from CEA database.

Design of 2D Matrix For Silicum Quantum computing with Validation by Simulation

The objective is to design a 2D matrix structure for quantum computing on silicon in order to consider structures of several hundred physical Qubits.

In particular the subject will be focused on:
- The functionality of the structure (Coulomb interaction, RF and quantum)
- Manufacturing constraints (simulation and realistic process constraint)
- The variability of the components (Taking into account the variability parameter and realistic defectivity)
- The constraints induced on the algorithms (error correction code)
- Scalability of the structure to thousands of physical Qubits

The candidate will work within a project of more than fifty people with expertise covering the design, fabrication, characterization and modeling of spin qubits as well as related disciplines (cryoelectronics, quantum algorithms, quantum error correction, …)

CFD modeling of gas movements in salt cavities

Computational statistics for post-flight analysis in atmospheric reentry

The post-doctorate corresponds to the context of flight tests of an instrumented vehicle (space shuttle, capsule or probe) which enters into the atmosphere. The aim is to reconstruct, from measurements (inertial unit, radar, meteorological balloon, etc.), the trajectory and various quantities of interest, in order to better understand the physical phenomena and to validate the predictive models. We focus on Bayesian statistics, associated with Markov chain Monte Carlo (MCMC) methods. The post-doctoral fellow will develop and extend the proposed approach and will benefit from a scientific collaboration with Audrey Giremus, professor at the University of Bordeaux and specialist in the field. We will in particular try to increase the performance of high dimensional sampling. Special attention will be paid to the machine learning issue of the exploitation of an aerological database. The final objective will consist in developping an evolving software prototype dedicated to the post-flight analysis of flight tests, that exploits the various sources of information. The evaluations will be based on simulated and real data, with comparison to existing tools. The collaboration work will lead to scientific communications and publications.

Effect of TSV presence on BEOL reliability for 3-layer stacked CMOS image sensor (CIS)

Because conventional downsizing based on the empirical Moore's law has reached its limitations, an alternative integration technology, such as three-dimensional integration (3DI) is becoming the mainstream. The 3rd generation of CMOS image sensor (CIS) stacks up to 3 die interconnected by hybrid bonding and High Density Through Silicon Vias (HD-TSVs). Devices and circuits good functioning and integrity have to be maintained in such an integration especially in the close neighborhood of TSVs. Thermal budget, copper pumping, thin wafer warpage can lead to electrical yield and reliability concerns and must be investigated.
The work consists in evaluating the impact of TSV processing and proximity on BEOL and FEOL performance and reliability. Acquired data sets will help to define design rules and in particular a potential Keep-Out Zone (KOZ) and calibrate a finite element model (FFM).

Development and application of Inverse Uncertainty Quantification methods in thermal-hydraulics within the new OECD/NEA activity ATRIUM

Within the Best Estimate Plus Uncertainty methodologies (BEPU) for the safety analysis of the Nuclear Power Plants (NPPs), one of the crucial issue is to quantify the input uncertainties associated to the physical models in the code. Such a quantification consists of assessing the probability distribution of the input parameters needed for the uncertainty propagation through a comparison between simulations and experimental data. It is usually referred to as Inverse Uncertainty Quantification (IUQ).
In this framework, the Service of Thermal-hydraulics and Fluid dynamics (STMF) at CEA-Saclay has proposed a new international project within the OECD/NEA WGAMA working group. It is called ATRIUM (Application Tests for Realization of Inverse Uncertainty quantification and validation Methodologies in thermal-hydraulics). Its main objectives are to perform a benchmark on relevant Inverse Uncertainty Quantification (IUQ) exercises, to prove the applicability of the SAPIUM guideline and to promote best practices for IUQ in thermal-hydraulics. It is proposed to quantify the uncertainties associated to some physical phenomena relevant during a Loss Of Coolant Accident (LOCA) in a nuclear reactor. Two main IUQ exercises with increasing complexity are planned. The first one is about the critical flow at the break and the second one is related to the post-CHF heat transfer phenomena. A particular attention will be dedicated to the evaluation of the adequacy of the experimental databases for extrapolation to the study of a LOCA in a full-scale reactor. Finally, the obtained input model uncertainties will be propagated on a suitable Integral Effect Test (IET) to validate their application in experiments at a larger scale and possibly justify the extrapolation to reactor scale.

Thermo-aeraulic numerical simulation of an incineration reactor

An incineration and vitrification process devoted to the treatment of apha contaminated organic/metallic wastes originating from MOX production facilities is currently under development at the LPTI laboratory (Laboratoire des Procédés Thermiques Innovants) from the CEA of Marcoule. The development program relies on full scale mock-up investigation tests as well as 3D numerical simulation studies.
The thermo-aeraulic model of the incinerator reactor, developed with the Ansys-Fluent commercial software, is composed of several elementary bricks (plasma, pyrolysis, combustion, particle transportation).
The proposed work consists in improving the model, in particular as regards the pyrolysis and combustion components : chemical reactions, unsteady process… The degree of representativeness of the model will be assessed on the basis of a comparative study using experimental data coming from experiments carried out on the prototype reactor. Besides this development work, various parametric studies will be performed in order to evaluate the impact of various reactor design modifications.
So as to investigate the radiologic behaviour of the reactor during incineration of alpha contaminated wastes, a particle transport model (DPM) associated to a parietal interaction model will be implemented. The simulation results will be compared to experimental data obtained from the analysis of deposits collected on reactor walls (experimental tests are performed with actinides inactive surrogates).

Top