Development of Reference Electrode Sensors for Na-Ion Batteries
The rapid advancement of Na-ion battery (NIB) technology presents promising opportunities for energy storage, but challenges remain in understanding their performance, aging mechanisms, and safety. This postdoctoral position aims to design and validate an innovative reference electrode sensor for Na-ion batteries, enabling precise in situ and operando characterization.
The candidate will work on the development and implementation of a reference electrode (RE) adapted to Na-ion batteries, based on materials synthesized during the project. The validation of the sensor will involve the instrumentation of battery cells and cycling tests under various conditions, as well as the analysis of performance and aging mechanisms.
The candidate will perform data analysis and post-mortem examinations (SEM, EDX, ICP, etc.) to correlate sensor measurements with degradation phenomena.
The position is integrated within a multidisciplinary team and in collaboration with the LEDNA (IRAMIS) at CEA Saclay for material synthesis. The work will be conducted at the Electrochemical, Post-Mortem & Safety Analysis Laboratory (LAPS) at CEA Grenoble, a leader in energy storage research.
Miniaturised analytical method dedicated to the screening of candidate molecules for the capture and removal of radionuclides
This project aims at developing a miniaturized multiplex device dedicated to the screening of the chelating ability of potential molecules for the decorporation of certain radionuclides (RN) from the nuclear power industry, for which current treatments are not satisfactory. The objective is to accelerate the identification of the most promising chelating molecules, while benefiting from the advantages of miniaturisation, such as the consumption of very small quantities of molecules and RN. In a previous project, a phosphated monolith of various lengths has been grafted in situ and characterised in capillaries of 100 µm internal diameter. The quantities of UO22+, Zr4+, Sr2+, Co2+, Cs+ and Ag+ immobilised on these monolithic phases have been measured online by coupling to an ICP-MS.Based on this work, the candidate will be responsible for developing and validating the miniaturised screening method with UO22+, for which data and chelating molecules are available, extending the approach primarily to Zr4+, Sr2+, Co2+, and to fabricate the microfluidic device incorporating parallel microchannels, in order to ultimately screen candidate molecules for distinct RNs in a single fluidic microsystem.
Experimental and Thermodynamic Modeling of Corium Phases Formed During Severe Nuclear Accidents (24 months)
During severe accidents in pressurized water reactors, uranium dioxide (UO2) fuel reacts with zirconium alloy cladding and the steel vessel, forming a mixture of liquid and solid phases known as "in-vessel corium". If the vessel ruptures, this corium interacts with the concrete raft, forming "ex-vessel corium". This phenomenon occurred in the Chernobyl and Fukushima severe accidents. To simulate these stages, multi-physics codes require accurate thermodynamic and thermophysical data for the various phases of corium. This project aims to fill the data gap through experimental measurements and modeling. The work will involve synthesizing samples, measuring liquidus/solidus temperatures and liquid phase densities, and characterizing samples using advanced techniques. Moreover, the laser heating setup combined with aerodynamic levitation (ATTILHA) used to acquire data will be improved. Experimental results will be compared with thermodynamic models (TAF-ID database), and discrepancies will be resolved using the CALPHAD method. Thermophysical data will also be validated using atomistic simulations and other measurement techniques.
TOMOGLASS: Gamma Emission Tomography Applied to the Radiological Characterization of Glass Residues from the Cold Crucible Vitrification Process
The TOMOGLASS project aims to develop an innovative gamma tomography system capable of operating in high-activity environments to characterize in three dimensions the glass residues resulting from the vitrification process of nuclear waste. The objective is to precisely locate platinum-group inclusions, which are poorly soluble in glass, in order to improve the understanding and control of the process. The system is based on a compact gamma imager integrating high-resolution pixelated CZT detectors, pinhole-type collimation, and mounting on a robotic arm. It will enable multi-isotopic reconstruction using advanced tomographic algorithms. This project is part of the modernization of the La Hague facilities and the integration of digital technologies within the framework of the factory of the future.
The first phase of the project will consist in demonstrating the feasibility of implementing a spectro-imager prototype in a constrained environment, building on existing technological components: detection modules and acquisition electronics based on the HiSPECT technology, and image reconstruction algorithms developed at CEA-Leti. The work will focus on conducting a multi-parameter study through numerical simulations (Monte Carlo calculation code) to design an optimized measurement system, and to generate simulated datasets for various representative measurement configurations. Once the concept has been validated, the work will continue in year N+1 with the assembly of the prototype components and their integration on a robotic arm. Experimental tests may then be carried out to demonstrate the system in a representative environment.
Development of an innovative instrumentation architecture using an array of magneto-resistive sensors to create a fast tomography system for fuel cells
Developing an innovative instrumentation architecture using an array of magneto-resistive sensors to create a rapid tomography system for fuel cells.
The goal is to develop a TRL 4 demonstrator in the laboratory to demonstrate a proof of
concept on a low-temperature fuel cell stack. This will include four measurement boards
with several dozen of synchronized magnetic sensors for simultaneous acquisitions. Experimental results and a description of the instrumentation system will be published. Historical data will be used to validate current density resolution algorithms and compare their performance to solutions based on Physics Informed Neural Network. Estimated current density results will be used for an additional publication.
The instrumentation system will be integrated into a CEA test bench dedicated to optimal control, transient observation, fault detection and exploration of defect propagation phenomena. This approach will offer dynamic and non-invasive observation of current distribution in the fuel cell, thereby improving the understanding of its operation and facilitating the optimization of its performance and lifespan.
Design and accelerated testing of corrosion FOSs for reinforced concrete structures
Corrosion of steel reinforcement is the main pathology threatening the durability of civil engineering structures. Today, structures are mainly monitored by means of periodic visual inspections or even auscultation (corrosion potentials, ultrasonic measurements, core sampling, etc…), which are not very satisfactory. There is therefore a need for instrumentation capable of detecting the initiation and location of corrosion of reinforcement in concrete and ensuring long-term monitoring (several decades or more). In the context of Civil Engineering (CE) structures, Optical Frequency-Domain Reflectometry (OFDR) appears to be a suitable metrological solution because of its centimetre resolution and measurement range (70 metres in the standard version, i.e. several thousand measurement points along an optical fibre).
Content of work: The aim will be to adapt the design of this fibre optic sensor (FOS) to increase its durability and then to verify its applicability in the laboratory. Initially, the person recruited on a fixed-term research contract will be asked to work on the durability of the connexion between the optical fibre and the armature. Two different methods are envisaged: plasma torch spraying of ceramic powders and sol-gel. Both of these processes prevent the galvanic coupling because they involve insulating materials (ceramics) and are already deployed in industry in various civil and military fields. Secondly, test specimens equipped with the FOS will be tested in the laboratory according to classic civil engineering situations, i.e. localised corrosion (pitting induced by exposure to chloride ions) and uniform corrosion (generalised corrosion induced by carbonation of the embedding concrete). OFDR acquisitions will be carried out periodically over time in parallel with conventional metrology (potential, etc.).
Separation microsystem coupled to mass spectrometry for on-line purification and characterisation of nuclear samples
The miniaturisation of analytical steps commonly carried out in laboratories offers many advantages and particularly in the nuclear sector, where the reduction of material consumption and waste production is of major interest. In this context, one of our laboratory’s focus area is the miniaturisation of analytical tools, particularly chromatographic separation techniques. The aim of this project is to reduce the scale of the purification steps of nuclear samples by solid phase extraction chromatography, prior to the analytical processes. Obtaining these miniaturised extraction devices is based on the in situ synthesis and anchoring of monoliths, in the channels of cyclic olefin copolymer (COC) microsystems. Since this material is chemically inert, COC functionalisation strategies are currently under development to covalently graft reactive sites on its surface, before locally anchoring actinide-specific monoliths in the micro-channels. The aim is to design and fabricate chromatographic extraction microsystems in COC, and to implement them for chemical purification and mass spectrometry measurements, both off-line and on-line.
Postdoc in Multi-instrumented operando monitoring of Li-ion battery for ageing
Nowadays, the development of new battery technology requires increasing the knowledge of degradation mechanisms occur inside the cell and monitor the key parameter in real time during cycling to increase the performances, lifetime and safety of the cells. To achieve these goals development of new sensing technology and integration inside and outside the cell is needed. The goal of the SENSIGA project is used advanced sensing technology to improve the monitoring of the cell by acquiring useful data correlate to the degradation process and develop more efficient battery management system with accurate state estimators. SENSIGA is a part of PEPR Batteries lead by CNRS and CEA and funding by the French Research Programme FRANCE 2030 to accelerate the development of new battery technology.
You will have the opportunity to work in a stimulating scientific environment focusing on the characterisation of both state of the art and latest generations of battery materials. Based on the sensing technology developed at CEA and from the state of the art, the SENSIGA project will reach the objective of the BATTERY2030+ roadmap goals for smart cells (https://battery2030.eu/research/roadmap/). One of the objectives of the project is to use external sensors to monitor the key parameters of the cell related to performances, ageing and safety behaviours.
Simulation of the interaction of a high energy pulsed X-ray beam with a scintillator
In the context of hydrodynamic experiments, the CEA-DAM uses pulse radiography facilities which generate, in a few tens of nanoseconds, a very high dose of energetic X-ray photons, up to 20 MeV. After crossing the studied object, the X photons interact with a detector, composed of a scintillator crystal converting the X photons into visible photons, which are then detected by a CCD camera. The objective of this post-doctorate is to set up a complete simulation chain of the detector, including the emission of visible photons by the scintillator and their transport by the optical chain to the CCD camera. Initially, the candidate will have to model the different mechanisms involved in the detection chain and identify the most relevant simulation tools to reproduce them. In a second step, he (she) will be required to compare the simulation results with experimental characterization campaigns, carried out using a pulsed X source. Finally, the candidate will be able to propose, using the chosen simulation chain, possible developments for future detection chains. This work may lead to publications.