Ageing battery analysis with internal multi-sensors analysis: development of sensors and operando measurements

CEA and CNRS collège de France lead the PEPR Batterie , a French National project with the objective to achieve the European Roadmap from Battery2030+ for the development of “smart battery”. The Sensiga project is a part of PEPR Battery. This project aims to develop new sensors technologies for monitoring the critical parameters of the Lithium ion cells during cycling to improve performances, safety and ageing. This new sensors technology will increase the knowledge of the internal physical, chemical and electrochemical process occurs in the cell. The large amount of data measuring operando will be used to developing new algorithm and strategies to improve the battery management systems. In the context of the Sensiga project, doctoral and postdoctoral position was open at CEA for working on this topic with a multidisciplinary and laboratory team. The aims of the work is to developing new sensing technology for in-situ and operando monitoring of the cell. The candidate will integrate a team specialized in the development of specific sensors for Lithium ion battery in the Laboratory of Postmortem Analysis and Security at CEA Grenoble.
The scope of the position will focus on the development of optical fibre sensors, the integration of theses sensors inside pouch cell and performing electrochemistry test for ageing study. This kind of sensors will be used to monitor the internal temperature, strain, and pressure and lithium concentration. The second type of sensors using in the project is the reference electrode using for electrode potential measurement. These data’s are crucial to access to the degradation mechanisms of each materials in operando. The candidate will be participate to the ageing test campaign and to the post-mortem analysis. This analysis compare to the ageing test will be used to identify the degradation mechanisms and correlate it to the sensors signal. The candidate will integrate a multidisciplinary team.

Design and fabrication of miniaturized extraction devices for sample purification hyphenated to elemental and isotopic analysis

The LANIE laboratory is focused on downscaling the sample purification steps performed by solid-phase extraction chromatography. The strategy is based on the implantation of functionalized polymeric monoliths within the channels of microsystems made of cyclic olefin copolymer (COC), material known to be easy to process but chemically inert. Once this key step is validated, this project aims to set up a comprehensive analytical pipeline in the laboratory, starting from the design, prototyping, and manufacturing of integrated miniaturized extraction devices, up to their de facto implementation for the reduced-scale analysis of U- and Pu- based samples.

Design and accelerated testing of corrosion FOSs for reinforced concrete structures

Corrosion of steel reinforcement is the main pathology threatening the durability of civil engineering structures. Today, structures are mainly monitored by means of periodic visual inspections or even auscultation (corrosion potentials, ultrasonic measurements, core sampling, etc…), which are not very satisfactory. There is therefore a need for instrumentation capable of detecting the initiation and location of corrosion of reinforcement in concrete and ensuring long-term monitoring (several decades or more). In the context of Civil Engineering (CE) structures, Optical Frequency-Domain Reflectometry (OFDR) appears to be a suitable metrological solution because of its centimetre resolution and measurement range (70 metres in the standard version, i.e. several thousand measurement points along an optical fibre).
Content of work: The aim will be to adapt the design of this fibre optic sensor (FOS) to increase its durability and then to verify its applicability in the laboratory. Initially, the person recruited on a fixed-term research contract will be asked to work on the durability of the connexion between the optical fibre and the armature. Two different methods are envisaged: plasma torch spraying of ceramic powders and sol-gel. Both of these processes prevent the galvanic coupling because they involve insulating materials (ceramics) and are already deployed in industry in various civil and military fields. Secondly, test specimens equipped with the FOS will be tested in the laboratory according to classic civil engineering situations, i.e. localised corrosion (pitting induced by exposure to chloride ions) and uniform corrosion (generalised corrosion induced by carbonation of the embedding concrete). OFDR acquisitions will be carried out periodically over time in parallel with conventional metrology (potential, etc.).

Separation microsystem coupled to mass spectrometry for on-line purification and characterisation of nuclear samples

The miniaturisation of analytical steps commonly carried out in laboratories offers many advantages and particularly in the nuclear sector, where the reduction of material consumption and waste production is of major interest. In this context, one of our laboratory’s focus area is the miniaturisation of analytical tools, particularly chromatographic separation techniques. The aim of this project is to reduce the scale of the purification steps of nuclear samples by solid phase extraction chromatography, prior to the analytical processes. Obtaining these miniaturised extraction devices is based on the in situ synthesis and anchoring of monoliths, in the channels of cyclic olefin copolymer (COC) microsystems. Since this material is chemically inert, COC functionalisation strategies are currently under development to covalently graft reactive sites on its surface, before locally anchoring actinide-specific monoliths in the micro-channels. The aim is to design and fabricate chromatographic extraction microsystems in COC, and to implement them for chemical purification and mass spectrometry measurements, both off-line and on-line.

Postdoc in Multi-instrumented operando monitoring of Li-ion battery for ageing

Nowadays, the development of new battery technology requires increasing the knowledge of degradation mechanisms occur inside the cell and monitor the key parameter in real time during cycling to increase the performances, lifetime and safety of the cells. To achieve these goals development of new sensing technology and integration inside and outside the cell is needed. The goal of the SENSIGA project is used advanced sensing technology to improve the monitoring of the cell by acquiring useful data correlate to the degradation process and develop more efficient battery management system with accurate state estimators. SENSIGA is a part of PEPR Batteries lead by CNRS and CEA and funding by the French Research Programme FRANCE 2030 to accelerate the development of new battery technology.
You will have the opportunity to work in a stimulating scientific environment focusing on the characterisation of both state of the art and latest generations of battery materials. Based on the sensing technology developed at CEA and from the state of the art, the SENSIGA project will reach the objective of the BATTERY2030+ roadmap goals for smart cells (https://battery2030.eu/research/roadmap/). One of the objectives of the project is to use external sensors to monitor the key parameters of the cell related to performances, ageing and safety behaviours.

Simulation of the interaction of a high energy pulsed X-ray beam with a scintillator

In the context of hydrodynamic experiments, the CEA-DAM uses pulse radiography facilities which generate, in a few tens of nanoseconds, a very high dose of energetic X-ray photons, up to 20 MeV. After crossing the studied object, the X photons interact with a detector, composed of a scintillator crystal converting the X photons into visible photons, which are then detected by a CCD camera. The objective of this post-doctorate is to set up a complete simulation chain of the detector, including the emission of visible photons by the scintillator and their transport by the optical chain to the CCD camera. Initially, the candidate will have to model the different mechanisms involved in the detection chain and identify the most relevant simulation tools to reproduce them. In a second step, he (she) will be required to compare the simulation results with experimental characterization campaigns, carried out using a pulsed X source. Finally, the candidate will be able to propose, using the chosen simulation chain, possible developments for future detection chains. This work may lead to publications.

Design of a photonic Doppler velocimetry diagnostic in the mid-infrared for high velocities

This post-doctorate aims to design, using innovative technological éléments, a photonic Doppler velocimetry diagnostic operating in the mid-infrared (between 3 µm and 5 µm) to probe clouds of dense particles moving at high speeds (up to 5000 m/s), in shock physics. Schematically, two laser waves slightly offset in frequency are caused to interfere on a photodetector connected to a digitizer, one serves as a reference and the other carries the speed information of the targeted object, by Doppler effect. The development of new optical components and advanced technologies in this range of wavelengths is currently in full swing, for applications in Defense, gas detection, etc... In a first design phase, the candidate will therefore have to identify and choose the most relevant photonic components for our needs. To do this, he or she will have to optimize the overall performance of the measurement chain, using commercial simulation tools or tools developed at CEA-DAM. In a second step, he (she) will constitute the measurement chain with the selected optical elements. He (she) may also be required to participate in the design and manufacture of precision mechanical elements to ensure the interface between the elements. Depending on the state of progress, the system thus designed may be deployed on dedicated experiments. This work may lead to publications.

Development of a new spectrometer for the characterization of the radionuclide-based neutron sources

Since few years, the LNHB is developing a new instrument dedicated to the neutron spectrometry, called AQUASPEC. The experimental device consists of a polyethylene container that is equipped with a central channel accommodating the source and 12-measurement channels (in a spiral formation) around the source, into which detectors can be placed. The container is filled with water in order to moderate neutrons emitted from the source. Measurements have performed with 6Li-doped plastic scintillators, optimized for the simultaneous detection of fast neutrons, thermal neutrons and gamma rays through the signal processing based on pulse shape discrimination (PSD). The spectrum reconstruction is performed with an iterative ML-EM or MAP-EM algorithm, by unfolding experimental data through the detector's responses matrix calculated with MCNP6 code. The candidate will work in the general way on issues related to the neutron spectrometry in the laboratory: Contribution to the development and validation of the new spectrometer AQUASPEC; Participation to the sources measurements and working on aspects of neutron detection and signal processing, in particular issue of the discrimination of neutron/gamma based on the pulse shape discrimination technique (PSD); Usage of Monte Carlo simulation codes and algorithms to reconstruct initial neutron energy distribution; Investigation and integration of information related to neutron/gamma coincidence specific to the XBe type sources.

Study and modeling of fiber Bragg grating acoustic receivers

CEA List has been working for several years on the development of advanced monitoring solutions using fibre optic acoustic receivers called Fiber Bragg Gratings. These optical sensors have a great potential for structural health monitoring, both because of their ability to be integrated into materials (concrete, organic composites, metal) and because of their ability to be deployed in severe environments (embedded, radiative, high temperature).
A post-doctoral work is proposed to carry out modelling of these Fiber Bragg Grating transducers in order to refine the understanding of their sensitivity to ultrasonic guided elastic waves and to help in the design of an associated control system thanks to an intelligent placement of the sensors. Ultimately, the aim is to be able to simulate their response within the Civa non-destructive testing software developed by CEA List, and more particularly via its module dedicated to Structural Health Monitoring (SHM). Such work would strongly contribute to the adoption and exploitation of this technology for Structural Health Monitoring applications.

Implementation of a sensor allowing the online monitoring of the corrosion of stainless steels in a hot and concentrated nitric acid medium

The control of materials (mainly stainless steel) aging of the spent nuclear fuel reprocessing plant is the subject of permanent attention. Some installations at La Hague plant will have to be replaced very soon. In this context, it is important for the industry to develop sensors that are resistant to concentrated nitric acid (˜ 2.5 mol / L) and temperature (from ambient to 130 °C), allowing the online monitoring of the corrosion.
The aim of this work is to manufacture one sensor for the detection of corrosion of the steel intended for handling by the operators of the plant. In case of a positive response, the second sensor is used.
The challenges of this work are essentially technological since it will develop or use materials adapted to concentrated and hot nitric acid media.
The laboratory is specialized in the corrosion study in extreme conditions. It is composed of a very dynamic and motivated scientific team.

Top