In-situ 4D tracking of microstructural evolution in atomistic simulations

The exponential growth of high-performance computing has enabled atomistic simulations involving billions or even trillions of particles, offering unprecedented insight into complex physical phenomena. However, these simulations generate massive amounts of data, making storage and post-processing increasingly restrictive. To overcome this limitation, on-the-fly (in-situ) analysis has emerged as a key approach for reducing stored data by extracting and compressing relevant information during runtime without significantly affecting simulation performance.

In this context, tracking the four-dimensional (space and time) microstructural evolution of materials under extreme conditions is a major scientific challenge. Atomistic simulations provide a unique spatial resolution to analyze crystalline defects such as dislocations, twinning, vacancies and pores, which govern dynamic phase transformations, melting, damage and mechanical behavior. By capturing their spatio-temporal evolution, it becomes possible to study their statistics, correlations and collective effects in out-of-equilibrium regimes, leading to more accurate predictive material models.

This project builds on advances of the exaNBody high-performance computing platform and a recently developed in-situ clustering method in the ExaStamp molecular dynamics code at CEA. This method projects atomic information onto a 3D Eulerian grid to perform real-time clustering. The objective is to extend this approach to full 4D tracking, enabling the time-resolved monitoring of clusters. This will allow dynamic graph-based analysis of their evolution, including changes in size, shape and temporal behavior, providing new insights into microstructural dynamics at the atomic scale.

Thermodynamic study of photoactive materials for solar cells

The development of solar photovoltaic electricity generation requires the development of new materials for converting solar radiation into electron-hole pairs. Organic-inorganic hybrid perovskites (HOIPs) of the CsPbI3 type, with substitutions of Cs by formamidinium (FA) and/or methylammonium (MA) ions, have emerged as very promising materials in terms of performance and manufacturing. Substitutions of Cs with elements such as Rb, Pb with Sn, and I with Br are also being considered to improve stability or performance. The synthesis and optimization of the composition of layers of such materials require a better understanding of their thermodynamic equilibrium properties and stability. The objective is to construct a thermodynamic model of the Cs-Rb-FA-Pb-Sn-I-Br system. The project began with the ternary Cs-Pb-I system, which resulted in a paper [1]. The next step will focus on the ternary Cs-Pb-Br system, followed by the quaternary Cs-Pb-I-Br system. The approach uses the CALPHAD method, which focuses on building a database and an analytical formulation of the phases Gibbs energy, capable of reproducing thermodynamic and phase diagram data. A critical review of the data in the literature will enable this database to be initialized and the missing data will be evaluated by experiments and/or DFT calculations.

High-throughput PVD deposition of semiconducting materials

Lead halide perovskites are a class of emerging semiconductors that have demonstrated considerable potential for utilization in solar cells.Nevertheless, the release of toxic lead into the environment during the lifespan of the cells is still a concern for their further commercialization.

This 24-months project aims at optimizing the deposition of lead-free double perovskite thin films for photovoltaic applications using PVD (Physical Vapor Deposition). The optimization of the material will be carried out by implementing high-throughput approaches in both the process and characterisation workflows.

Novel concentrated alloys (HEA/CCA) for nuclear applications: Corrosion and irradiation resistance in molten salts

This postdoctoral position is part of the national PEPR DIADEM program, within the DIAMS project, which aims to accelerate the discovery of new materials by combining computer design and experimental testing. The research focuses on materials for Molten Salt Reactors (MSRs), which require alloys that are resistant to both molten salt corrosion and irradiation. Certain optimized high-entropy alloys and complex concentrated alloys (HEA-CCA), offer superior performance compared to conventional materials such as austenitic stainless steels (ASS).

The postdoctoral research follows on an IA-based alloy design project carried out at IMN (Nantes), which identified promising compositions produced by conventional metallurgy and characterized after corrosion and irradiation on the JANNuS Saclay platform. The tests were carried out sequentially.

Starting in early 2026, the unique JANNuSel device will enable simultaneous corrosion and irradiation testing on both conventionally processed alloys and new compositions produced by AM (additive manufacturing) on the SAMANTA platform.

The samples will be analysed by SEM, TEM/EDX, EBSD, Raman spectroscopy, Atom Probe Tomography (APT), and synchrotron X-ray diffraction (MARS, SOLEIL) to understand the underlying mechanisms and optimize alloy properties.

The position is based at CEA Saclay, in close collaboration with IMN and Mines Saint-Étienne, and benefits from a rich interdisciplinary research environment.

Diamond-based electrochemical sensors for monitoring water pollution in urban environments

This postdoctoral position is offered by CEA List as part of the European UrbaQuantum project ("A novel, Integrated Approach to Urban Water Quality Monitoring, Management and Valorisation"), part of the HORIZON-CL6-2024-ZEROPOLLUTION-02 call for projects. The main objective of this project is to develop, in response to climate change, sensors, models, and protocols for better management of the water cycle in urban environments.
At the Sensors and Instrumentation for Measurement Laboratory (LCIM)of CEA List the postdoctoral fellow will contribute to the development of electrochemical sensors based on synthetic diamond and associated measurement protocols for the detection of pollutants such as pharmaceuticals, heavy metals, PFAS, and pesticides. These sensors will be miniaturized and integrated into a microfluidic cell, in partnership with CEA-Leti, then tested under real-world field conditions.

Development and characterization of an oxide/oxide composite material

Fiber-reinforced ceramic matrix composites (CMCs) are a class of materials that combine good specific mechanical properties (properties relative to their density) with excellent high-temperature resistance (> 1000 °C), even in an oxidizing atmosphere. They generally consist of a carbon or ceramic fiber reinforcement and a ceramic matrix (carbide or oxide).
The proposed study focuses on the development of a fabrication process for oxide/oxide CMCs with long and/or short fibers that possess suitable dielectric, thermal, and mechanical properties.

Synthesis, Characterization, and Molecular Modeling of M-(A)-S-H

The main hydration product of Mg/silicate cements is magnesium silicate hydrate (M-S-H), whose composition evolves with time and environmental interactions [refs 1,2], with Mg/Si ratios ranging from 0.67 to 1.5, variable water content, and potential Al incorporation. Atomistic models of M-(A)-S-H remain largely unexplored [ref 4], and most of their properties are still unknown, making it difficult to establish composition–property relationships.

This project aims to elucidate the atomic-scale structure of (alumino)silicate magnesium hydrates (M-(A)-S-H) by combining experimental techniques and atomistic simulations, and to estimate their mechanical properties. The study will focus on M-(A)-S-H compositions relevant to nuclear applications or new low carbon cement matrices.

Study of the Thermodiffusion of Small Polarons in UO2

The position is published on the CEA website at the following address:
https://www.emploi.cea.fr/job/emploi-post-doctorat-etude-en-ab-initio-de-la-thermodiffusion-des-petits-polarons-dans-UO2-h-f_36670.aspx

PV module designed for repair and recycle using ultrasonic delamination

PV panels, crucial for producing decarbonized electricity, have a limited lifespan due to performance degradation, failures, or economic factors. In the next decade, millions of tons of PV panels will become waste, posing significant environmental and societal challenges. Europe has recognized this problem through the WEEE directive (Waste Electrical and Electronic Equipment) to manage electronic waste, including PV.
PV modules are complex devices containing critical materials such as silver and long-life pollutants like fluorinated polymers. On top of that, the glass sheet and the silicon solar cells show a high carbon footprint, making the reuse essential to mitigate environmental impact. Various dismantling techniques have been explored in R&D labs to obtain pure fractions of metals, polymers and glass, but these methods require further improvement. Key objectives include selectivity and purity, material yield and control of residual pollution. To boost the sustainability of photovoltaic energy, managing module lifespans in a circular economy vision is essential.
The LITEN institute is leading research into delamination and separation methods to enhance the quality of recycled materials. In this postdoc opportunity, we will explore the implementation of ultrasonic waves for dismantling or repairing PV modules. The development of a numerical model to understand vibration phenomena in PV panels will support the design of a tool for efficient wave coupling. Beside modelling ant tool set-up, we will explore new PV architectures based on "design to recycle" and "design to repair" principles, focusing on composite layers sensitive to ultrasound. Evaluating various phenomena induced by these layers, such as optical transmission and thermo-mechanical behaviour, will be a key aspect of the study. The research will leverage a high-level scientific environment, with expertise in thermo-mechanical numerical modelling, PV module design and prototype’s fabrication.

Development of a new generation of reversible polymer adhesives

Polymeric adhesives are generally cross-linked systems used to bond two substrates throughout the lifetime of an assembly, which may be multi-material, for a wide range of applications. At their end of life, the presence of adhesives makes it difficult to separate materials and recycle them. Moreover, it is difficult to destroy the cross-linking of the adhesives without chemical or thermal treatment that is also aggressive for the bonded substrates.
In this context, the CEA is developing adhesives with enhanced recyclability, by integrating recyclability into the chemical structures right from the synthesis of the polymer networks. The first approach involves incorporating dynamic covalent bonds into polymer networks, which can be exchanged under generally thermal stimulus (e.g. vitrimers). A second approach involves synthesising polymers that can be depolymerised under a specific stimulus (self-immolating polymers) and have the ability to cross-link.

The post-doc will develop 2 networks that can be used as adhesives with enhanced recyclability. A first network will be based on a depolymerizable chemistry under stimulus already developed on linear polymer chains, to be transposed to a network. A second vitrimer network will be synthesised on the basis of previous work at the CEA. Activation of the bond exchange in this network will take place via a so-called photolatent catalyst, which can be activated by UV and will make it possible to obtain a UV- and heat-stimulated adhesive. The choice and synthesis of these catalysts and their impact on the adhesive will be the focus of the study. The catalysts obtained could also be used to trigger depolymerisation of the first depolymerisable system under stimulus.

Top