Time-resolved in-situ study, by X-ray diffraction under synchrotron radiation, of structural evolutions in a high temperature oxidized zirconium alloys

In certain hypothetical accident situations in pressurized-water nuclear reactors (PWRs), the zirconium alloy cladding of fuel pallets, which constitutes the first barrier for the containment of radioactive products, can be exposed for a few minutes to water vapor. at high temperature (up to 1200 ° C), before being cooled and then quenched with water. The cladding material then undergoes numerous structural and metallurgical evolutions. In order to study these structural evolutions in a precise way, a first experiment campaign was carried out on the BM02 line of the ESRF on a prototype furnace allowing to perfectly control the atmosphere and the temperature. Two tasks will be entrusted to the candidate: continue and finish the analysis of the first experiment(phase fraction determination, residual constraints ...) and prepare a new complementary experimental proposal by mid 2020.

Nanofabrication of spintronic spiking neurons

In the frame of the French national ANR project SpinSpike, Spintec laboratory is opening a postdoctoral researcher position. The candidate will work in collaboration with UMPhy CNRS-Thales and Thales TRT. The objective is the realization of proof-of-concept magnetic tunnel junction based artificial spiking neurons able to generate spikes and propagate them between coupled artificial neurons.
The candidate should have a strong background in nanofabrication and should be familiar with common techniques of optical and e-beam lithography as well as different etching techniques. The candidate can also be involved in the electrical characterization of the devices.
The position is expected to start on April 1, 2021 and go on for up to 2 years jointly between the RF team and MRAM teams of Spintec. The contract will be managed by CEA and funded by ANR Agency.
We offer an international and competitive environment, state-of-the-art equipment, and the possibility to perform research at the highest level. We promote teamwork in a diverse and inclusive environment and welcome all kinds of applicants. Further information about Spintec laboratory www.spintec.fr .

Compressed Sensing Electron Tomography: Quantitative Multi-dimensional Characterization of Nanomaterials

Electron tomography (ET) is a well-established technique for the 3D morphological characterization at the nanoscale. ET applied to spectroscopic modes for 3D structural and chemical analysis has become a hot topic but necessitates long exposure times and high beam currents. In this project, we will explore advanced compressed sensing (CS) approaches in order to improve the resolution of spectroscopic ET and reduce significantly the dose. More precisely, we will focus on the following two tasks: 1. Comparison of total variation minimization, orthogonal or undecimated wavelets, 3D curvelets or ridgelets and shearlets for nano-objects with different structures/textures; 2. Comparison of PCA and novel CS-inspired methods such as sparse PCA for dimensionality reduction and spectral un-mixing. The code will be written in Python, using Hyperspy (hyperspy.org) and PySAP (https://github.com/CEA-COSMIC/pysap) libraries.
The project follows a multidisciplinary approach that involves the strong expertise of the coordinator in ET and the input of two collaborators with complementary skills: Philippe Ciuciu with expertise in MRI (DRF/Joliot/NEUROSPIN/Parietal) and Jean-Luc Starck with expertise in cosmology, signal processing and applied maths (DRF/IRFU/DAP/CosmoStat). The three communities share a strong interest in compressed sensing algorithms.

Data science for heterogeneous materials

In order to predict the functional properties of heterogeneous materials through numerical simulation, reliable data on the spatial arrangement and properties of the constitutive phases is needed. A variety of experimental tools is commonly used at the laboratory to characterize spatially the physical and chemical properties of materials, generating "hyperspectral" datasets. A path to progress towards an improved undestanding of phenomena is the combination of the various imaging techniques using the methods of data science. The objectives of this post-doc is to enrich material knowledge by developping tools to discover correlations in the datasets (for exemple between chemical composition and mechanical behavior), and to increase reliability and confidence in this data by combining techniques and physical constraints. These tools will be applied to datasets of interest regarding cementitious materials and corrosion product layers from archaeological artifacts.

Nano-silicon/graphene composites for high energy density lithium-ion batteries

This postdoctoral fellowship is part of the Graphene Flagship Core 2 H2020 european project (2018-2020) on the energy storage applications of graphene. In lithium-ion batteries, graphene associated to nanostructured silicon in a proper composite helps increase the energy capacity. Indeed graphene wraps silicon, reducing its reactivity with electrolyte and the formation of the SEI passivation layer. It also maintains a high electrical conductivity within the electrode.
The study will compare two technologies: graphene-silicon nanoparticles and graphene-silicon nanowires. The former composite, already explored in the above mentioned project, will be optimized in the present study. The latter is a new kind of composite, using a large scale silicon nanowire synthesis process recently patented in the lab. The postdoc will work within two laboratories: a technological research lab (LITEN) with expertise in batteries for transportation, and a fundamental research lab (INAC) with expertise in nanomaterial synthesis.
The postdoc will synthesize silicon nanowires for his/her composites at INAC. Following LITEN know-how, she/he will be in charge of composite formulation, battery fabrication and electrochemical cycling. He/she will systematically compare the electrochemical behavior of the nanoparticle and nanowire based silicon-graphene composites. Comparison will extend to the mechanism of capacity fading and SEI formation, thanks to the characterization means available at CEA Grenoble and in the European consortium: X-ray diffraction, electronic microscopy, XPS, FTIR, NMR spectroscopies. She/he will report her/his work within the international consortium (Cambride UK, Genova Italy, Graz Austria) meetings.
A 2-year post-doctoral position is open.
PhD in materials science is requested. Experience in nanocharacterization, nanochemistry and/or electrochemistry is welcome.
Applications are expected before May 31st, 2018.

AlGaN/GaN HEMTs transfert for enhanced electrical and thermal performances

Due to their large critical electric field and high electron mobility, gallium nitride (GaN) based devices emerge as credible candidates for power electronic applications. In order to face the large market needs and benefit from available silicon manufacturing facilities, the current trend is to fabricate those devices, such as aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs), directly on (111) silicon substrates. However, this pursuit of economic sustainability negatively affects device performances mainly because of self-heating effect inherent to silicon substrate use. New substrates with better thermal properties than silicon are desirable to improve thermal dissipation and enlarge the operating range at high performance.
A Ph.D. student in the lab. has developed a method to replace the original silicon material with copper, starting from AlGaN/GaN HEMTs fabricated on silicon substrates. He has demonstrated the interest of the postponement of a GaN power HEMT on a copper metal base with respect to self heating without degrading the voltage resistance of the component. But there are still many points to study to improve the power components.
Post-doc objectives : We propose to understand what is the best integration to eliminate self-heating and increase the voltage resistance of the initial AlGaN/GaN HEMT. The impact of the component transfer on the quality of the 2D gas will be analyzed.
The same approach can be made if necessary on RF components.
Different stacks will be made by the post-doc and he will be in charge of the electrical and thermal characterizations. Understanding the role of each part of the structure will be critical in choosing the final stack.
This process will also be brought in larger dimensions.
This post-doc will work if necessary in collaboration with different thesis students on power components.

Physisorption of chemical species on sensitive surfaces during transfer in controlled mini-environment in microelectronics industry

A characterization platform based on the connection concept between process and characterization tools through the use of a transfer box under vacuum was implemented allowing a quasi in-situ characterization of substrates (wafers) of the microelectronics. Currently, this transfer concept based simply on static vacuum inside a carrier box is satisfactory regarding the residual O or C on the surface of especially sensitive materials (Ge, Ta, Sb, Ti…) and the MOCVD layers growth on GST or III/V surfaces. Its optimization for more stringent applications (molecular bonding, epitaxy…) in terms of contamination surface prevention requires studies the understanding of the physico-chemical evolution of the surfaces.
The proposed work will be focused on physico chemical studies of the evolution and molecular contamination of surfaces during transfers and will take place in clean room. XPS, TD-GCMS and MS coupled to the carrier itself (to be implemented) will be used to address the sources (wall, seals, gaseous environment…) of the adsorbed chemical species implied and to determine the physisorption mechanisms on the substrates. The studied surfaces will be sensitive to the contaminants in such a way than the box environment impact will be extracted and studied parameters will be the nature of polymer seal used, the carrier box thermal conditioning, the vacuum level, the use of low pressure gaseous environment in the carrier (gas nature, pressure level…).

Development of flexible solar panel for space application

Traditional solar panels used to power satellites can be bulky with heavy panels folded together using mechanical hinges. Smaller and lighter than traditional solar panels, flexible solar array consists of a flexible material containing photovoltaic cells to convert light into electricity. Being flexible, the solar array could roll or snap using carbon fiber composite booms to deploy solar panels without the aid of motors, making it lighter and less expensive than current solar array designs.
On the other hand, satellite trends are shifting away from one-time stints and moving towards more regular use in a constellation setting. In the last years, the desire increased to mass-produce low-weight satellites. Photovoltaic arrays companies are challenged on their capacity to face these new needs in terms of production capacity and versatility. And this is exactly where space photovoltaics can learn from terrestrial photovoltaics where this mass production and low-cost shift occurred years ago.
To tackle these new challenges, the Liten institute started to work on these topics two years ago. In the frame of this post-doc, we propose the candidate to work on the development of an innovative flexible solar panel architecture, using high throughput assembly processes. We are looking for a candidate with a strong experience in polymers and polymers processing, along with an experience in mechanics. A previous experience in photovoltaic will be greatly appreciated.

Development of lead free piezoelectric actuator

At CEA-Tech, the LETI Institute creates innovation and transfers it to industry. The micro-actuator component laboratory (LCMA) is working on the integration of piezoelectric materials into microsystems that allow electromechanical transduction. Lead zirconate titanate (PZT) is today the most powerful piezoelectric material for micro-actuator applications. However, the introduction in the near future of a new standard regarding the lead amount allowed in chips (European RoHS directive) leads us to evaluate alternative lead-free materials to PZT for piezoelectric actuator applications. The development of lead-free materials has thus become a major focus of piezoelectric research. This research led to revisit and modify some classical piezoelectric such as KNbO3 and BaTiO3. In particular, the KNaxNb1-xO3 (KNN) family has been identified as promising. The objective of the postdoc is therefore to evaluate some lead-free piezoelectric materials and to compare their properties with that of the reference material, PZT. Suitable test vehicles will be fabricated in LETI’s clean rooms for electrical and piezoelectric characterizations by mean of dedicated tools already available at lab. For this work the candidate will lean on a solid experience developed at LETI for more than 20 years on piezoelectric thin films.

Bio-compatible, bio-resorbable microbatteries for medical applications

In the framework of its activities dedicated to embedded micro-batteries, LETI initiates prospective research in the field of micro-batteries for medical applications, and in particular as energy power sources for implantable micro-devices. In this context, a collaborative project, including LETI labs and an academic Partner (ICMCB, Bordeaux), is aiming at designing, manufacturing and studying prototypes of bio-resorbable primary microbatteries.
The main tasks will include (i) a contribution to the design of the thin film electrochemical cell by the selection of adequate biocompatible materials (able to generate the targeted electrical power, corrodible and able to solubilize in the body), (ii) the manufacture of the cell constituents (electrodes, electrolyte, substrate) as thin films (sputtering, electrochemical plating, doctor blade coating) and their characterization,(iii) the achievement of full prototype cells and the study of their in vitro behaviour.
The work will be carried out at ICMCB (Bordeaux) in a joint CEA/ICMCB team, in collaboration with LETI labs in Grenoble.

Top