Exploring microfluidic solutions for manufacturing targets for fusion power generation

As part of a call for projects on "innovative nuclear reactors", the TARANIS project involves studying the possibility of energy production by a power laser-initiated inertial confinement fusion power plant. The current context, which encourages the development of low-carbon energies, and the fusion experiments carried out by the NIF's American teams, make it very attractive to conduct high-level research aimed at eventually producing an economically attractive energy source based on inertial fusion.
Among the many technical hurdles to be overcome, the production of fusion targets with a suitable reaction scheme compatible with energy production is a major challenge. The CEA has the know-how to produce batches of capsules containing the fusible elements of the reaction. However, the current process is not suitable for mass production of hundreds of thousands of capsules per day at an acceptable cost.
One high-potential avenue lies in the use of microfluidic devices, for which the Microfluidic Systems and Bioengineering Laboratory (LSMB) of the Health Technologies and Innovation Department (DTIS) of CEA's DRT has recognized expertise.

Study of cleavage brittle crack initiation sites in low alloy bainitic steels with segregations

Macro-segregations of alloy elements and impurities in heavy forged 16-20 MND5 components or Pressurized Water nuclear Reactors induces significant fluctuations of these mechanical properties, and in particular, of dynamic and fracture toughness. Such a macro-segregation occurs during the solidification of the ingot and can still be observed in the final component, even after significant discarding performed on purpose during the fabrication process.
Recent results have confirmed the essential role played by specific carbides located close to grain boundaries, even for moderately segregated materials. The main objective of this Post-Doctoral internship is to precisely study some clivage initiation sites on these alloys to determine the types of carbides and the cristallographic conditions that promote crack initiation. A statistical analysis will then be performed to identify the population of these carbides within the microstructure of the material. The experimental results will be used as entries of a local approach to brittle fracture model.

Cryogenic separation of gas mixture

Agglomerate breakage model and homogenisation by DEM simulations: Calibration with tomographic micro-compressions in X ray beam line Soleil

The reference ceramic fabrication process involves three main stages: grinding, pressing, and sintering. Pellet compaction during pressing relies on three main densification steps rearrangements by motion, compaction by strain, and agglomerate fractures by compression. This research project aims to explore the influence of the pressing step on the microstructure behavior during the sintering process. The study focuses on a powder composed of agglomerates with a microstructure based on a homogeneous mix of TiO2-Y2O3, TiO2 for surrogate UO2 and Y2O3 for surrogate PuO2. Each agglomerate consists of unbreakable elementary particles included in breakable aggregates, synthesized using the Cryogenic Granulation Synthesis Process (CGSP) [1].
Recent investigations at the Anatomix X-ray beam line in the synchrotron Soleil [2] have validated the results of tomographic micro-compressions, aligning with Kendall's theory, Fig 1. The experiments involved one-way cyclic micro-compression tests on agglomerates subjected to a simple load and unload cycle until breakage. Tomographic post-treatments provided insights into porosities, crack initiation, and propagation. Several DEM simulation studies have also been used to explore agglomerate behavior under dynamic or quasi-static loading with and without breakage, however without fully calibrating the breakage model [3], [4], [5].

Study of the seismic behavior of piping systems using mechanical models of different degrees of fidelity

Piping systems are part of the equipment to which particular attention is paid as part of the safety review or design of nuclear installations. They are designed in accordance with codes, standards and regulations to withstand loads that occur or may occur over the life of a facility. These systems must therefore be designed to withstand accidental loads such as earthquakes. Feedback shows that piping systems generally behave well in the event of an earthquake. When failures are observed, they are more likely to be due to significant anchor movement, brittle materials, unwelded joints, corrosion, piping support failures, or seismic interactions. In practice, to be able to estimate the beyond design seismic behavior and the associated failure risks, the engineer can implement numerical models involving varying degrees of refinement depending on needs. This study consists of taking stock of the numerical modeling capabilities of piping systems under earthquake. For reasons of computational burden, global modeling based on beam elements is often favored, considering simplified material laws such as bilinear material laws with kinematic hardening. We know the “theoretical” limits of these models but it is difficult to have clear ideas about their real limits of applicability depending on the level of loading and the damage targeted. To make this assessment, we propose to interpret, using different numerical models involving different degrees of fidelity, the results of the experimental campaign carried out by the BARC and which was used for the MECOS benchmark (METallic COmponent margins under high Seismic loads).

Study of aerosol transport through degraded materials

Radioactive Waste (RW) are produced during nuclear activities and are categorized as a function of their activities and their half-life in order to manage their conditioning, transport, storage… Mortar can be used in order to immobilize and/or create a safe barrier forming a Radioactive Waste Package (RWP) in order to protect the environment. It is important to study the efficiency of this mortar barrier for long term and safety assessment have to investigate the case of crack mortar formation as radioactive particles could then migrate in the cracks.
The LECD laboratory investigated this problematic by measuring the migration of CeO2 particle in mortar cracks using X-Ray microtomography. The cracks were synthesized by dissolving plastic molds (designed by 3D printing). This study showed the influence of particle interactions with tortuosity and roughness of the crack, but was limited to 40 µm particle diameter.
The aim of the postdoctoral work is to develop an experimental approach similar to the method developed to study the efficiency of HEPA filters, with particles of 0.05 - 5 µm diameter. Quantitative measurements will be performed on the particle flows on both sides of the cracked mortar sample. LECD has acquired an aerosol generator, a light-scattering aerosol spectrometer system for particle size analysis and concentration determination and an Universal Scanning Mobility Particle Sizers. The researcher will also develop modelling work using numerical tools as STARCCM+.
This project will be carried out under the format of an 12-month fixed-term contract at the Atomic Energy and Alternative Energies Commission (CEA), at the Cadarache site (Saint-Paul-lez-Durance, 13) at the Expertise and Destructive Characterization Laboratory (LECD) of the Expertise and Characterization CHICADE Service (SECC).
Contacts: ingmar.pointeau@cea.fr (R&D engineer) – Olivier.vigneau@cea.fr (Head of the Laboratory)

Development of piezoelectric resonators for power conversion

CEA-Leti has been working to improve energy conversion technologies for over 10 years. Our research focuses on designing more efficient and compact converters by leveraging GaN-based transistors, thereby setting new standards in terms of ultra-fast switching and energy loss reduction.
In the pursuit of continuous innovation, we are exploring innovative paths, including the integration of piezoelectric mechanical resonators. These emerging devices, capable of storing energy in the form of mechanical deformations, offer a promising perspective for increased energy density, particularly at high frequencies (>1 MHz). However, the presence of parasitic resonance modes impacts the overall efficiency of the system. Therefore, we are in need of an individual with skills in mechanics, especially in vibrational mechanics, to enhance these cleanroom-manufactured micromechanical resonators.
You will be welcomed in Grenoble within a team of engineers, researchers and doctoral students, dedicated to innovation for energy, which combines the skills of microelectronics and power systems from two CEA institutes, LETI and LITEN, close to the needs of the industry (http://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/electronique-puissance.aspx).
If you are a scientifically inclined mind, eager to tackle complex challenges, passionate about seeking innovative solutions, and ready to contribute at the forefront of technology, this position/project represents a unique opportunity. Join our team to help us push the boundaries of energy conversion.

References : http://scholar.google.fr/citations?hl=fr&user=s3xrrcgAAAAJ&view_op=list_works&sortby=pubdate

Seismic behavior of an overhead crane

Overhead cranes are part of the equipment in industrial installations to which special attention must be paid. They are generally located in the upper part of buildings and are potentially subject to significant levels of acceleration in the event of an earthquake, due to the amplification induced by the supporting structure. Consequently, they are potentially subjected to significant forces and can be the source of significant forces on the supporting structure. This study is a continuation of two previous test campaigns carried out on the Azalée shaking table of the EMSI laboratory, on a mock-up of an overhead crane. It aims to provide validated numerical models of this kind of equipment. Two lines of research are considered. The first axis aims to complement the “historical” test campaigns with static tests to justify the adjustment of the numerical models. The second axis consists of exploiting, by comparison tests/calculations, all of the tests that were carried out as part of a previous test campaign for statistical analysis purposes.

HPC simulation of electrode mechanical properties in Li-ion batteries

Li-ion batteries are complex multi-physics systems in which chemical reactions, transport phenomena, and mechanical deformation are strongly coupled. The battery electrodes are composed of micrometric granular materials (the microstructure) where the lithium can insert and disinsert, a process that creates internal mechanical stress and strain in the materials and subsequent volumic changes. While it is currently observed that the coupling between electrochemical reactions and mechanical deformation at the microstructure level strongly impacts the battery performances, lifespan and safety, the origin of this impact is poorly understood. The global objective of this position is to better understand the coupling between mechanical deformations of the microstructure and the local conditions of lithium transport in the electrode. The study should lead to practical applications such as recommendation on the electrode design to increase life capability of Li-ion batteries.

Earthquake effect on underground facilities

The Industrial Centre for Geological Disposal (Cigeo) is a project for a deep geological disposal facility for radioactive waste to be built in France. These wastes will be put in sealed packages in tunnels designed at 500 meters depth. The seals are made of a bentonite/sand mixture which has a high swelling capacity and a low water permeability. As a part of the long-term safety demonstration of the repository, it must be demonstrated that the sealing structures can fulfill their functions under seismic loads over their entire lifetime. In order to guarantee this future nuclear waste repository, CEA and Andra are collaborating to work on the potential scientific and engineering challenges involved.
The responses of underground repository to earthquake events are complex due to the spatially and temporally evolving hydro-mechanical properties of the surrounding media and the structure itself. Accurate modeling of the behavior, therefore, requires a coupled multiphysics numerical code to efficiently model the seismic responses for these underground repositories within their estimated lifespan of 100 thousand years.
The research will therefore, propose a performance assessment for sequential and parallel finite element numerical modeling for earthquake analysis of deep underground facilities. Then perform a synthetic data sampling to account for material uncertainties and based on the obtained results in the previous assessment, run a sensitivity analysis using a FEM or a metamodeling process. Finally, the results and knowledge gained within the span of this project will be processed and interpreted to provide responses for industrial needs.