Structural characterization, reactivity and physico-chemical properties of Pu(IV) colloidal suspensions
Pu(IV) is known to be highly prone to hydrolysis leading to the formation of extremely stable Pu(IV) colloidal suspensions (known as intrinsic colloids). The lack of knowledge concerning the speciation and reactivity of these Pu colloids hinders the development of reliable models allowing to predict their behavior in industrial and environmental systems. The behavior of these colloidal species towards dissolution, complexation, or aggregation has been very poorly described in the literature. It thus appears essential to study and characterize Pu(IV) colloids and in particular their surface charge properties which ensure their stability and their interactions with their environment. This pioneering project in the nuclear field aims to study and characterize colloidal Pu(IV) suspensions whose size, concentration and dispersion medium can be controlled by our approaches. It comprises: (i) the preparation of intrinsic Pu(IV) colloidal suspensions and the study of their chemical and sonochemical reactivity; (ii) the electrophoretic characterization of various colloidal suspensions and the study of their behavior under the influence of an electric field; (iii) the characterization of their multi-scale structural properties by small and large angle scattering (SAXS / WAXS) coupled with EXAFS / XANES measurements (MARS line, SOLEIL synchrotron).
Bio-compatible, bio-resorbable microbatteries for medical applications
In the framework of its activities dedicated to embedded micro-batteries, LETI initiates prospective research in the field of micro-batteries for medical applications, and in particular as energy power sources for implantable micro-devices. In this context, a collaborative project, including LETI labs and an academic Partner (ICMCB, Bordeaux), is aiming at designing, manufacturing and studying prototypes of bio-resorbable primary microbatteries.
The main tasks will include (i) a contribution to the design of the thin film electrochemical cell by the selection of adequate biocompatible materials (able to generate the targeted electrical power, corrodible and able to solubilize in the body), (ii) the manufacture of the cell constituents (electrodes, electrolyte, substrate) as thin films (sputtering, electrochemical plating, doctor blade coating) and their characterization,(iii) the achievement of full prototype cells and the study of their in vitro behaviour.
The work will be carried out at ICMCB (Bordeaux) in a joint CEA/ICMCB team, in collaboration with LETI labs in Grenoble.
Carbon nanotubes grafting for positive electrodes of lithium/sulfur cells
In a view to develop electric vehicles, researches on lithium batteries are now focusing on sulfur active material. Indeed, this new system should allow to produce cheap and high energy batteries of about 600 Wh/kg. While being developed for more than 40 years, the limitations of such a system are still quite problematic: elemental sulfur is an electronic insulator, sulfur and intermediate lithium polysulfides are soluble in the electrolyte and final discharge product Li2S is non-soluble and insulating too.
This post-doctoral position will thus aim at improving the performances of the sulfur positive electrode, by combining :
- Carbon nanotubes that will allow to improve the electronic conductivity of the positive electrode, as well as to provide a substrate for sulfur grafting
- Disulfide functions that will be grafted on the nanotubes. Thanks to this chemical grafting of active material, the electrochemical reaction would occur without leading to sulfur and polysulfides dissolution, thus leading to higher capacity and cyclability along with lower self-discharge.
New electrode materials for Na-ion batteries
Na-ion battery is a challenging technology to replace Li-ion battery as it is cost competitve and may allow better cycle life. Sodium has also similar property to Lithium (light and electronegative element).
The eletrochemistry of the sodium is somewhat different of lithium with much less studies reported in the litterature.
The work will consist in the elaboration and characterization of promising electrode materials for Na-ion batteries.
Modelling of actinide electrorefining
Modelling of an actinide electrorefining process
In the frame of the SACSESS European project CEA, ITU and CNRS are studying jointly a pyrochemical process for the reprocessing of spent nuclear fuels by electrolysis in molten chloride salts.
The main objective of the proposed post-doctoral work concerns the modelling of electrorefining runs onto aluminium cathodes using U-Pu-Zr-Am-Gd-Nd-Ce-Y metallic alloy. The modelling aims to evaluate the efficiency of this electrolytic process in terms of separation factors and to optimize the process flow sheets for a safe nuclear materials management.
Development of new processes for the fabrication of advanced interconnect structures of solar cells
The fabrication of solar cells with high performances at a reduced cost is a key challenge addressed by many research institutions and industrials worldwide. Many technological solutions are being investigated. Among them, a promising approach consists in forming narrower metal lines to limit shadowing of active areas of the cells. This work aims at replacing serigraphy by new fabrication processes able to reduce line width. For this purpose, the conducting substrate is coated by an insulating mask in which the lines are defined. The metal is then directly plated selectively onto the weakly conducting portions of the substrate, i.e. the lines, using electrolytic or electroless reactions. The process conditions will be adapted with regard to the nature of the initial conducting surfaces.
Multiscale approach of f elements aqueous solutions modeling
A post-doctoral position is available for one year at CEA-Marcoule
The study will be the modeling of concentrated aqueous phases of heavy metal salts using both microscopic and mesoscopic modeling.
Separation processes for heavy metals recycling usually use liquid-liquid extraction with the transfer of ionic species from a concentrated aqueous phase to an organized organic phase.
This post-doctoral research subject relates to the chemical properties of these processes, and especially to the characterization of the aqueous phase using as accurate as possible models. The goal is to understand the various effects (solvation, electrostatic and van der waals forces, entropy…) influencing the structural and energetic properties of these solutions. A multi-scale approach will be used to study some systems of interest for both fundamental and industrial point of view, the aim being the characterization of these solutions from their molecular structure to their thermodynamic properties. The tools and the approach used here have to be be valid for separative chemistry overall.
Proton conducting interpenetrating polymer networks as new PEMFC membranes
This subject takes place in the frame of the development of proton exchange membrane fuel cells (PEMFC) and the main objective is to increase their performance and durability for operation above 100°C at low relative humidity.
The current standard membranes for use in PEMFC applications remain perfluorosulfonated ionomers such as Nafion® due their good proton conductivity and chemical stability. Nevertheless, their proton conductivity decreases for relative humidity below 70% especially at high temperature because of a too low density of proton conducting groups. This characteristic is a limitation for their use in the working conditions of the requirements for the automotive application. With these polymers, an increase of the proton conducting group density leads to a decrease of mechanical and dimensional stability. Yet, this stability is already quite low and decreases the PEMFC durability. The goal of this subject is to develop new membrane structures based on interpenetrating polymer networks that do not present this antagonism between good mechanical stability and proton conductivity. This strategy which has recently been patented by CEA (patent application number 08 06890) is based on the association of two entangled polymer networks, one sulfonated for proton conductivity and one fluorinated for mechanical and chemical stability.
The applicant will make the membranes and then will characterize their mechanical properties, proton conductivity as well as gas permeability. He will also quantify their performance and durability in a running fuel cell.
Nano-silicon based negative composite electrode for lithium-ion batteries
With the aim of improving the battery type lithium-ion batteries, many works are devoted to research of new materials for the manufacturing of high-capacity electrodes. Silicon is an attractive material as an element of negative electrode instead of graphitic carbon with its high capacity that can theoretically reach almost 3579 mAh/g (Li15Si4, ten times more than the graphite (372 mAh / g, LiC6) . However, one major problem that has prevented the development of such electrodes is the high coefficient of volumetric expansion of silicon which leads to rapid degradation of the material (cracked, spraying the electrode ,....) and its performance. In this context, the work of post-doc will be to explore the electrochemical performance of negative electrodes prepared from silicon nanoparticles synthesized by laser pyrolysis CEA. The work will be to incorporate nanoparticles in a negative composite electrode and test its performance. The understanding work will be focused on the dual influence of nanostructuration of silicon particles and of the composition / implementation of the composite electrode on the performance. Thus, this work will be located at the junction of two CEA laboratory specialists from both key points of the study (Synthesis in Saclay, development and characterization of batteries in Grenoble).
Couplings between the distributions of water and current density in operating Proton Exchange Membrane Fuel Cell (PEMFC)
The post-doc work will be focused on the measurement of the current density and of the water distributions in an operating fuel cell with a real design, in order to give a better understanding of PEMFC operation as a function of the operating parameters (Temperature, Gas hydration, Pressure, Gas composition). The measurement of the distribution of the current density will be performed using a reliable commercial setup on a full size cell. CEA developed a technique based on Small Angle Neutron Scattering (SANS) as a non-intrusive tool in order to quantify the water distribution during fuel cell operation within and without the membrane. CEA benefits for international recognition on this topic. These measurements will be conducted in high flux neutron reactors, such Institut Laue Langevin (ILL). Some specific high and low resolution neutron imaging experiments could be also be conducting additionally in order to have a complete 3D view of water repartition.