Lithium ion Domestic Batteries recycling : Development and understanding of a new deactivation concept

Domestic lithium-ion batteries gather all batteries used in electronic devices, mobile phone, and tooling applications. By 2030, the domestic lithium-ion battery market will increase up to 30%. These lithium-ion batteries contain critical raw materials such as Nickel, Cobalt, lithium. With the new European recycling regulation (need to recover high % of Ni, Co, Cu, Li in 2031) and the emergency to find greener and safer recycling process (avoid thermal treatments currently used), it is today necessary to develop new deactivation process of domestic lithium-ion batteries.

The deactivation process is the 1st step of the recycling process and the aim is to remove all cell energy. It has to address several lithium-ion chemistries, be continuous, safe, controllable and low cost.
We propose a new electrochemical based concept (on going patent). The objective is to develop and understand the electrochemical mechanisms of this new deactivation concept of lithium ion domestic batteries

Simulation of landslides and the associated water waves by a 3D code

Until now, tsunamis generated by underwater landslides were modelled at the CEA using a 2D long wave code (Avalanche) that was adapted to the computing resources available at the time but now seems obsolete in the literature. An initial post-doctoral study (2023-2025) showed that the 3D OpenFoam tool could accurately simulate a landslide and the associated waves in the generation zone. During this post-doctoral fellowship, a coupling between the CEA's ‘2D’ propagation code (Taitoko) and the 3D code was developed in order to propagate waves over long distances. The work carried out will be continued. The first objective will be to familiarise with the tools developed and to publish the work carried out on the 80 Mm3 collapse that occurred in Mururoa in 1979. The main objective is then to carry out simulations of potential collapses in the northern zone, bearing in mind that the main difficulty lies in defining the geometry of these potential collapses. The propagation of waves over long distances is simulated by a ‘2D’ tsunami code coupled with the OpenFoam code.

Tools and diagnostic methods for the reuse of electronic components

The Autonomy and Sensor Integration Laboratory (LAIC) at CEA-Leti has the primary mission of developing sensor systems for the digitalization of systems. The team's activities are at the interface of hardware (electronics, optronics, semiconductors), software (artificial intelligence, signal processing), and systems (electronic architecture, mechatronics, multiphysics modeling).

In a context of exponential growth in electronics and scarcity of resources, the reuse of electronic components from end-of-life systems represents a promising avenue to limit environmental impact and support the development of a circular economy. The objective of this project is to develop an advanced diagnostic methodology to assess the health status of electronic components, particularly power components, to reintegrate them into a less constraining second-life cycle.

The postdoctoral researcher will be tasked with developing a comprehensive approach to evaluate the reuse potential of electronic components, with the aim of reintroducing them into second-life cycles. This will include:
- Identifying relevant health indicators to monitor the performance evolution of components (e.g., MOSFETs, IGBTs, capacitors, etc.);
- Setting up test benches and sensors adapted to measure electrical, thermal, or mechanical parameters, with the goal of detecting signs of aging;
- Analyzing degradation modes through experimental tests and failure models;
- Developing algorithms for predicting the remaining useful life (RUL) adapted to different usage scenarios;
- Contributing to scientific publications, the valorization of results, and collaboration with project partners.

Analysis of Gas Effluents for More Eco-Responsible Plasma Etching Processes

Traditionally used fluorinated gases, such as CF4 and C4F8, exhibit extremely high Global Warming Potentials (GWPs), significantly contributing to climate change. To address these environmental challenges, the project aims to promote the use of alternative low-GWP gases in combination with efficient exhaust abatement systems at the reactor outlet, while maintaining high-performance plasma etching processes. In this context, the postdoctoral researcher will be responsible for the analysis and characterization of gaseous species in an industrial plasma etching reactor using mass spectrometry. These measurements will be compared with the gas effluent at the outlet of the pumping and abatement systems. The main objectives are (i) to quantify the Destruction Removal Efficiency (DRE) of high and low GWP fluorocarbon gases during plasma processing and within the pumping and abatement stages, and (ii) to identify and propose innovative, environmentally responsible alternatives to minimize the release of high-GWP gaseous effluents.

Development of an innovative instrumentation architecture using an array of magneto-resistive sensors to create a fast tomography system for fuel cells

Developing an innovative instrumentation architecture using an array of magneto-resistive sensors to create a rapid tomography system for fuel cells.
The goal is to develop a TRL 4 demonstrator in the laboratory to demonstrate a proof of
concept on a low-temperature fuel cell stack. This will include four measurement boards
with several dozen of synchronized magnetic sensors for simultaneous acquisitions. Experimental results and a description of the instrumentation system will be published. Historical data will be used to validate current density resolution algorithms and compare their performance to solutions based on Physics Informed Neural Network. Estimated current density results will be used for an additional publication.
The instrumentation system will be integrated into a CEA test bench dedicated to optimal control, transient observation, fault detection and exploration of defect propagation phenomena. This approach will offer dynamic and non-invasive observation of current distribution in the fuel cell, thereby improving the understanding of its operation and facilitating the optimization of its performance and lifespan.

Solvothermal synthesis of carbon dots for optoelectronic applications

Carbon dots (C-dots) are nano-sized particles of carbon that exhibit unique electronic, optical and chemical properties due to their exceptional physico-chemical properties. These small, high surface-to-volume ratio materials are semiconductors that glow under irradiation, making them ideal for detecting ionizing radiation. Conventional plastic scintillators rely on energy transfer from the ultraviolet to visible light via organic fluorophores. The ability of CDs to absorb photons in the ultraviolet range and emit them in the visible range means that they could potentially replace organic fluorophores in their role as a bridge between ultraviolet and visible light. With low production costs, they can be synthesized either by conventional stepwise organic synthesis or, more rapidly, by top-down or bottom-up single-step approaches using a variety of chemicals. In this context, we have recently developed an interesting synthesis route enabling the preparation of C-dots emitting at different wavelengths, thus covering the entire visible range.

Secure Implementations of Code-Based Post-Quantum Cryptography: Software-Hardware Co-Design and Side-Channel Resistance

Quantum computing threatens traditional cryptographic schemes like RSA and ECC, prompting the need for post-quantum cryptography (PQC). NIST’s standardization process selected algorithms like HQC, a code-based Key Encapsulation Mechanism. Efficient and secure implementation of these algorithms, especially in resource-constrained environments such as IoT and embedded systems, remains a challenge. Physical attacks, particularly side-channel and fault injection attacks, require robust countermeasures like masking, shuffling, and hiding. These protections, however, introduce performance overhead, making hardware/software co-design essential. The project focuses on the secure software implementation of HQC with strong resistance to physical attacks. Target platforms include RISC-V embedded systems. The research involves designing and evaluating side-channel countermeasures on these platforms. Later phases will extend the work to FPGA prototypes for validating security in hardware. ASIC design may follow to optimize area, power, and performance while maintaining security. The candidate will also develop algorithmic and architectural techniques for attack mitigation. Contributions will include open-source tools and benchmarking. The work will support secure deployment of PQC in real-world applications.

PV module designed for repair and recycle using ultrasonic delamination

PV panels, crucial for producing decarbonized electricity, have a limited lifespan due to performance degradation, failures, or economic factors. In the next decade, millions of tons of PV panels will become waste, posing significant environmental and societal challenges. Europe has recognized this problem through the WEEE directive (Waste Electrical and Electronic Equipment) to manage electronic waste, including PV.
PV modules are complex devices containing critical materials such as silver and long-life pollutants like fluorinated polymers. On top of that, the glass sheet and the silicon solar cells show a high carbon footprint, making the reuse essential to mitigate environmental impact. Various dismantling techniques have been explored in R&D labs to obtain pure fractions of metals, polymers and glass, but these methods require further improvement. Key objectives include selectivity and purity, material yield and control of residual pollution. To boost the sustainability of photovoltaic energy, managing module lifespans in a circular economy vision is essential.
The LITEN institute is leading research into delamination and separation methods to enhance the quality of recycled materials. In this postdoc opportunity, we will explore the implementation of ultrasonic waves for dismantling or repairing PV modules. The development of a numerical model to understand vibration phenomena in PV panels will support the design of a tool for efficient wave coupling. Beside modelling ant tool set-up, we will explore new PV architectures based on "design to recycle" and "design to repair" principles, focusing on composite layers sensitive to ultrasound. Evaluating various phenomena induced by these layers, such as optical transmission and thermo-mechanical behaviour, will be a key aspect of the study. The research will leverage a high-level scientific environment, with expertise in thermo-mechanical numerical modelling, PV module design and prototype’s fabrication.

Study of the Velocity-Vorticity-Pression formulation for discretising the Navier-Stokes equations.

The incompressible Navier-Stokes equations are among the most widely used models to describe the flow of a Newtonian fluid (i.e. a fluid whose viscosity is independent of the external forces applied to the fluid). These equations model the fluid's velocity field and pressure field. The first of the two equations is none other than Newton's law, while the second derives from the conservation of mass in the case of an incompressible fluid (the divergence of velocity vanishes). The numerical approximation of these equations is a real challenge because of their three-dimensional and unsteady nature, the vanishing divergence constraint and the non-linearity of the convection term. Various discretisation methods exist, but for most of them, the mass conservation equation is not satisfied exactly. An alternative is to introduce the vorticity of the fluid as an additional unknown, equal to the curl of the velocity. The Navier-Stokes equations are then rewritten with three equations. The post-doc involves studying this formulation from a theoretical and numerical point of view and proposing an efficient algorithm for solving it, in the TrioCFD code.

Modeling and integrating Local-First Data Types

Existing modeling frameworks have limited collaboration capabilities. Collaboration at model level is one of the top desired features as identified in the literature. However, most port of solutions primarily rely on cloud-based and centralized databases as their technological solution. While these solutions ease collaboration among connected partners by employing concurrency control techniques or adopting a "last writer wins" policy, they do not support disconnected collaboration scenarios, which is an important feature for designing local-first sofware. This situation presents a significant compromise: utilizing cloud-based solutions and sacrificing data ownership control versus adopting separate instances and without collaborative capabilities. The objective of this postdoctoral project is to contribute and extend an existing local-first Model-Based Systems Engineering (MBSE) framework, related to this work [5], built upon specialized Conflict-free Replicated Data Types (CRDTs). The goal is to enable real-time collaboration through modeling-specific CRDTs. The proposed approach involves extending a middleware layer utilizing CRDTs to seamlessly synchronize distributed, offline-capable engineering models.

Top