Postdoc in Multi-instrumented operando monitoring of Li-ion battery for ageing
Nowadays, the development of new battery technology requires increasing the knowledge of degradation mechanisms occur inside the cell and monitor the key parameter in real time during cycling to increase the performances, lifetime and safety of the cells. To achieve these goals development of new sensing technology and integration inside and outside the cell is needed. The goal of the SENSIGA project is used advanced sensing technology to improve the monitoring of the cell by acquiring useful data correlate to the degradation process and develop more efficient battery management system with accurate state estimators. SENSIGA is a part of PEPR Batteries lead by CNRS and CEA and funding by the French Research Programme FRANCE 2030 to accelerate the development of new battery technology.
You will have the opportunity to work in a stimulating scientific environment focusing on the characterisation of both state of the art and latest generations of battery materials. Based on the sensing technology developed at CEA and from the state of the art, the SENSIGA project will reach the objective of the BATTERY2030+ roadmap goals for smart cells (https://battery2030.eu/research/roadmap/). One of the objectives of the project is to use external sensors to monitor the key parameters of the cell related to performances, ageing and safety behaviours.
Development of Algorithms for the Detection and Quantification of Biomarkers from Voltammograms
The objective of the post-doctoral research is to develop a high-performance algorithmic and software solution for the detection and quantification of biomarkers of interest from voltammograms. These voltammograms are one-dimensional signals obtained from innovative electrochemical sensors. The study will be carried out in close collaboration with another laboratory at CEA-LIST, the LIST/DIN/SIMRI/LCIM, which will provide dedicated and innovative electrochemical sensors, as well as with the start-up USENSE, which is developing a medical device for measuring multiple biomarkers in urine.
X-ray tomography reconstruction based on analytical methods and Deep-Learning
CEA-LIST develops the CIVA software platform, a reference for the simulation of non-destructive testing processes. In particular, it proposes tools for X-ray and tomographic inspection, which allow, for a given tomographic testing, to simulate all the radiographic projections (or sinogram) taking into account various associated physical phenomena, as well as the corresponding tomographic reconstruction.
The proposed work is part of the laboratory's contribution to a European project on tomographic testing of freight containers with inspection systems using high-energy sources. The spatial constraints of the projection acquisition stage (the trucks carrying the containers pass through an inspection gantry) imply an adaptation of the geometry of the source/detector system and consequently of the corresponding reconstruction algorithm. Moreover, the system can only generate a reduced number of projections, which makes the problem ill-posed in the context of inversion.
The expected contributions concern two distinct aspects of the reconstruction methodology from the acquired data. On the one hand, it is a question of adapting the analytical reconstruction methods to the specific acquisition geometry of this project, and on the other hand, to work on methods allowing to overcome the lack of information related to the limited number of radiographic projections. In this objective, supervised learning methods, more specifically by Deep-Learning, will be used both to complete the sinogram, and to reduce the reconstruction artifacts caused by the small number of projections available. A constraint of adequacy to the data and the acquisition system will also be introduced in order to generate physically coherent projections.
Behavior of materials in molten salts
Access to clean and affordable Energy is a key challenge in the current context of climate emergency. Several leads have been considered for several years but technological issues remain up to date to make it happen. From concentrated solar plant to 4th generation of nuclear reactor, molten salt is a promising media (both for heat transfer fluid and the fuel itself). Nevertheless, due to the presence of impurities, molten salts are highly corrosive for commonly used materials.
Most of the commercial alloys - either nickel based or iron base - seems to suffer from rapid attack. It is then needed to broaden the scope of the studies by investigating innovative materials. Thus, a screening of materials is planned to select the most interesting ones. After a thorough filtering, a study of the corrosion mechanism will be carried out through analysis at different scales (SEM, DRX, SDL, ICP, etc … )as well via electrochemical techniques and thermodynamic modelisation (HSC and FactSage).
The aim of the post doctoral subject offered at the S2CM (Service of corrosion and Behavior of Materials) consists in the entire study of the behavior, from the sample preparation to the caracterization of corrosion products. This topic is highly experimental and goes deep in the understanding of the corrosion mechanisms. This post doc position is part of a project gathering top - Notch industrial and academics (EDF,Framatome, Orano and the CNRS). Results obtained are subject to be presented to the different partners.
Next generation PV module packaging design and mechanical testing
Photovoltaic modules are required to last 25- 30 years in harsh outdoor environment. The packaging of PV modules plays an essential role in reaching this target. PV cells are protected by a glass frontsheet, and highly engineered polymeric encapsulants and backsheets. Encapsulants provide moisture, oxygen &UV barrier, electrical isolation and mechanical protection of highly fragile cells while they must ensure optical coupling between the various layers. Current industrial process technology for module manufacturing is lamination that adds additional constraints to the formulation of encapsulants. These numerous requirements lead to ever-involving complex encapsulant composition and behavior.
The aim of this post-doc is to establish the correlation between the material properties of engineered plastics– their processing conditions and thermo-mechanical behavior in high performance PV modules with heterojunction, back-contact or Si/Perovksite tandem cells. Material selection and lamination process development will be guided by detailed material characterization (DSC, DMA, Peel strength, TGA, WVTR, Soxhlet extraction etc.). Moreover, we aim to establish insights in the encapsulant processing conditions and its impact on mechanical stability of PV modules. The selection of the encapsulants to investigate will be strongly guided by eco-design to lower the environmental impact and to increase the recyclability of modules. This postdoc is conducted in the frame of an EU collaboration.
Strain driven Group IV photonic devices: applications to light emission and detection
Straining the crystal lattice of a semiconductor is a very powerful tool enabling controlling many properties such as its emission wavelength, its mobility…Modulating and controlling the strain in a reversible fashion and in the multi% range is a forefront challenge. Strain amplification is a rather recent technique allowing accumulating very significant amounts of strain in a micronic constriction, such as a microbridge (up to 4.9% for Ge [1]), which deeply drives the electronic properties of the starting semiconductor. Nevertheless, the architectures of GeSn microlasers under strong deformation and recently demonstrated in the IRIG institute [2] cannot afford modulating on demand the applied strain and thus the emission wavelength within the very same device, the latter being frozen “by design”. The target of this 18 months post doc is to fabricate photonic devices of the MOEMS family (Micro-opto-electromechanical systems) combining the local strain amplification in the semiconductor and actuation features via an external stimulus, with the objectives to go towards: 1-a wide band wavelength tunable laser microsource and 2-new types of photodetectors, both in a Group IV technology (Si, Ge and Ge1-xSnx). The candidate will conduct several tasks at the crossroads between fabrication and optoelectronic characterization:
a-simulation of the mechanical operation of the expected devices using FEM softwares, and calculation of the electronic states of the strained semiconductor
b-fabrication of devices at the Plateforme Technologique Amont (lithography, dry etching, metallization, bonding), based on results of a
c-optical and material characterization of the fabricated devices (PL, photocurrent, microRaman, SEM…) at IRIG-PHELIQS and LETI.
A PhD in the field of semiconductors physics or photonics, as well as skills in microfabrication are required.
[1] A. Gassenq et al, Appl. Phys. Lett.108, 241902 (2016)
[2] J. Chrétien et al, ACS Photonics2019, 6, 10, 2462–2469
Cascade of circulicity in compressible turbulence
In this post-doctorate, we propose to study the properties of the small scales of forced compressible homogeneous turbulence. More precisely, exact statistical relations similar to the Monin-Yaglom relation will be investigated. The idea, detailed in reference [1], is to understand how the transfer of circulicity is organized in the inertial range. Circulicity is a quantity associated with angular momentum and, by extension, with vortex motions. The analysis of its inertial properties allows to complete the description of the energy cascade already highlighted in previous works [2,3].
The objective of the post-doctorate is to carry out and exploit direct simulations of compressible homogeneous turbulence with forcing, in order to highlight the inertial properties of circulicity .
To this end, the post-doctoral student will be given access to the very large computing center (TGCC) as well as a code, Triclade, solving the compressible Navier-Stokes equations [4]. This code does not have a forcing mechanism and the first task will therefore be to add this functionality. Once this task has been accomplished, simulations will be carried out by varying the nature of the forcing and in particular the ratio between its solenoidal and dilatational components. These simulations will then be exploited by analyzing the transfer terms of circulicity.
[1] Soulard and Briard. Submitted to Phys. Rev. Fluids. Preprint at arXviv:2207.03761v1
[2] Aluie. Phys. Rev. Lett. 106(17):174502, 2011.
[3] Eyink and Drivas.Phys. Rev. X 8(1):011022, 2018.
[4] Thornber et al. Phys. Fluids 29:105107, 2017.
Microfluidic biocatalysis
The overall objective of the project is to propose a new mode of biocatalytic production based on continuous flow and combining macro and micro-fluidics. The aim is to develop a biocatalysis process involving fluidic bioreactors capable of ensuring continuous biotransformation, thanks to immobilized enzymes or whole cell catalysts. This process will be optimized to improve the efficiency of enzymatic reactions on the one hand and to obtain important production capacities on the other hand. Two types of enzymes will be studied, nitrilases and ketoreductases.
First, the candidate will be responsible for the search for robust enzymes for the target reactions and screening on the defined substrates. He or she will be responsible for the development of reaction conditions in isolated enzymes and whole cells and the determination of apparent kinetics. Then, he/she will be in charge of setting up the biocatalysis operating conditions and the immobilization of the biocatalyst in versatile continuous reactors.
This subject is carried out between two departments of the CEA (Direction of Fundamental Research/IBFJ/Genoscope in Evry and Direction of Technological Research/Leti in Grenoble).
The candidate will work in pair with a PhD student on the design of the biocatalytic reactor and the scaling up of the biocatalytic process.
Development of irradiation resistant silicon materials and integration in photovoltaïcs cells for space applications
Historically, photovoltaic (PV) energy was developed together with the rise of space exploration. In the 90’s, multijunction solar cells based on III-V materials progressively replaced silicon (Si) cells, taking advantage of higher efficiency levels and electrons/protons irradiation resistance. Nowadays, the space environment is again looking at Si based PV applications: request of higher PV power, moderated space mission lengths, cost reduction issues (€/W Si ~ III-V/500), higher efficiencies p-type Si PV cells… Solar cells are exposed to cosmic irradiation in space, especially to electrons and protons fluxes. The latter’s affect the cells performances, essentially because of bulk defect formations and charge carrier recombination. In order to use Si based solar cells in space, we need to increase their irradiation resistance, which is the main goal of this post-doc position. To do so, the work will first consist in elaborating new Si materials, with increased irradiation resistance. Compositional aspects of the Si will be modified, particularly by introducing elements limiting the formation of bulk defects under irradiations, developing electrical passivation properties. The electronic properties of the materials will be deeply characterized before and after controlled irradiation. Then, this Si material will be used to fabricate heterojunction solar cells. Their performances will be evaluated again before and after irradiation. Such experimental work could be supported by numerical simulation at the device scale.