Experimental and Thermodynamic Modeling of Corium Phases Formed During Severe Nuclear Accidents (24 months)
During severe accidents in pressurized water reactors, uranium dioxide (UO2) fuel reacts with zirconium alloy cladding and the steel vessel, forming a mixture of liquid and solid phases known as "in-vessel corium". If the vessel ruptures, this corium interacts with the concrete raft, forming "ex-vessel corium". This phenomenon occurred in the Chernobyl and Fukushima severe accidents. To simulate these stages, multi-physics codes require accurate thermodynamic and thermophysical data for the various phases of corium. This project aims to fill the data gap through experimental measurements and modeling. The work will involve synthesizing samples, measuring liquidus/solidus temperatures and liquid phase densities, and characterizing samples using advanced techniques. Moreover, the laser heating setup combined with aerodynamic levitation (ATTILHA) used to acquire data will be improved. Experimental results will be compared with thermodynamic models (TAF-ID database), and discrepancies will be resolved using the CALPHAD method. Thermophysical data will also be validated using atomistic simulations and other measurement techniques.
Impact of Storage Environment on the Aqueous Alteration of Iodate and/or Carbonate-Substituted Apatites for the Confinement of Long-Lived Radionuclides
Today, during the reprocessing of spent nuclear fuel, iodine-129 and carbon-14, two long-lived radionuclides, are managed through regulated discharge. The D-CLIC project, funded as part of the France 2030 actions, is an innovative project that aims to propose a method for conditioning iodine-129 and carbon-14 in the crystalline structure of phosphocalcic apatites. The qualification of this conditioning method is a scientific and environmental challenge. One of the objectives is to validate the long-term behavior of such matrices on inactive materials in environments that may be encountered at a future deep geological disposal site. The mission entrusted to the candidate will be to specify the alteration of these crystalline phases under saturated aqueous conditions for two types of environments, the first representative of the storage area for long-lived intermediate-level waste (ILW) and the second, representative of the storage area for high-level waste (HLW), as a function of different intrinsic and extrinsic parameters.
Accelerated development of materials resistant to molten chloride salts
The accelerated development of materials is a major challenge for all industries, and corrosion resistance is all the more important for resource conservation issues. This project therefore aims to estimate the corrosion resistance of FeNiMnCr alloys in chloride salt for use in molten salt nuclear reactors, in collaboration with the University of Wisconsin, which has demonstrated extensive expertise in the accelerated development of materials for molten fluoride and chloride salt reactors. As part of this post-doc, dozens of samples of quaternary FeNiMnCr model alloys will be synthesised by additive manufacturing at the University of Wisconsin, varying the composition in order to map the entire composition tetrahedron as accurately as possible. These samples, with a NiCr model alloy corroded in a wide range of molten chlorides salt chemistries, will then be corroded at the CEA. The aim of these experiments is, on the one hand, to obtain a large database on the corrosion of FeNiMnCr alloys in a very short time (1.5 years) and, on the other hand, to screen the effect of a wide range of salt compositions on a model NiCr alloy. Finally, these experiments will make it possible to target the best materials for studying their corrosion mechanisms.
Understanding and modeling the thermodynamic and kinetic properties of MOX fuel in future reactors
This study is part of the Sodium-Cooled Fast Reactor projects. Uranium and plutonium dioxide (U,Pu)O2, known as MOX, is the reference fuel. During operation, fuel pellets are subjected to a high thermal gradient that induces mass transport, thermodiffusion, and vaporization phenomena, coupled with irradiation effects. Fuel performance codes are developed to simulate the behavior of fuel rods under nominal and incidental conditions, up to and including meltdown.
The objective of this study is to improve the thermokinetic model of MOX used in these codes. This model is based on the description of the U-Pu-O system using the CALPHAD method, coupled with a database of element mobilities developed using DICTRA software. The description of defects will be extended with the introduction of metal vacancies and oxygen clusters. The description of thermodynamic data (oxygen potential and heat capacity) and the phase diagram will also be improved by taking into account the most recent data. Finally, the mobility database, coupled with the Calphad model, will be improved to better describe diffusion in MOX. New experimental data as well as data calculated using atomic-scale calculation methods (molecular dynamics, ab initio) will be used.
Optimisation of the durability of metal alloys at high temperatures: exploration of new oxidation conditions
The aim of the OPTIMIST exploratory project is to increase the service life of metal alloys (alumina and chromia forming alloys) by forming a protective oxide layer, as is almost always the case to protect alloys from corrosion. The great originality of OPTIMIST will consist in forming an oxide layer with a minimum of 0D (point defects) and 2D (grain boundaries) structural defects. This objective will be based on two distinct strategies: the first will consist of forming a so-called endogenous oxide layer, i.e. by pre-oxidising the substrate by carefully choosing the pre-oxidation conditions (temperature, oxidising medium, oxygen partial pressure) in two types of Rhines Pack specifically developed at CEA/DES and IJL; the second will consist of forming a so-called exogenous oxide layer, i.e. created by a deposition technique: the HiPIMS recently commissioned at the CEA/INSTN. Different pre-oxidation conditions (for the endogenous layer) and process conditions (for the exogenous layer) will be investigated, then their 0D and 2D defects will be characterised at SIMaP using a novel combination of cutting-edge structural (TEM-ASTAR), chemical (atom probe, SIMS, nano-SIMS) and electronic (PEC PhotoelEctroChemistry) techniques. Finally, these characterised samples will be corroded in two environments (in air and in molten salts) at high temperatures to assess the effectiveness of the protection compared with conventional pre-oxidation. The stages of oxide growth, its stoichiometry and its microstructure (grain size and shape, nature of the grain boundaries) will thus be identified as a function of the endo and exogenous growth conditions so as to control them in order to achieve an oxide layer containing as few defects as possible.
Development and characterization of an oxide/oxide composite material
Fiber-reinforced ceramic matrix composites (CMCs) are a class of materials that combine good specific mechanical properties (properties relative to their density) with excellent high-temperature resistance (> 1000 °C), even in an oxidizing atmosphere. They generally consist of a carbon or ceramic fiber reinforcement and a ceramic matrix (carbide or oxide).
The proposed study focuses on the development of a fabrication process for oxide/oxide CMCs with long and/or short fibers that possess suitable dielectric, thermal, and mechanical properties.
Mitigation of Alkali Silica Reaction in concrete used for radwaste stabilization and solidification
Electricity production from nuclear power plants generates radioactive wastes, the management of which represents a major industrial and environmental concern. Thus, low- or intermediate - level radioactive aqueous waste streams may be concentrated by evaporation, and immobilized with a Portland cement, before being sent to disposal. Nevertheless, interactions may occur between some components of the waste and the cement phases or aggregates, and decrease the stability of the final waste forms. Thereby, the formation of a gel-like product has been recently observed on the surface of some cemented drums of evaporator concentrates which were produced in the 80’s in Belgium. This product results from a reaction between silica from the aggregates and the very alkaline pore solution of the concrete. However, its composition and rheological properties differ from those reported for alkali-silica gels in civil engineering. Extensive work has been performed to better understand the processes involved in the gel formation within the cement-waste forms and characterize its properties. Based on these results, the post-doctoral project will be focussed on the mitigation of alkali silica reaction in cement-waste forms. Two approaches will be more particularly investigated by decreasing the water saturation ratio of concrete and/or the pH of its pore solution using supercritical carbonation.
This project is intended for a post-doctoral fellow wishing to develop skills in materials science, with an interest in advancing the field of cement chemistry and improving the conditioning of radioactive waste. It will be performed in collaboration with ONDRAF-NIRAS, the Agency in charge of radioactive waste management in Belgium, and will build upon the expertise of two laboratories at CEA Marcoule: the Cements and Bitumen for Waste Conditioning Laboratory for materials elaboration and characterization, and the Supercritical and Decontamination Laboratory.
Rhelogical properties of molten crystallized glass
Formulation of nuclear waste conditioning glass results from a compromise between waste loading, glass technological feasibility and its long-term behavior. Up to now borosilicate glasses formulated at CEA and elaborated at La Hague plant by Orano to condition nuclear waste are homogeneous when molten. That means that today glass formulation is determined such as solubility limits of each constituting elements of waste aren’t exceeded in order to avoid phase separation (implying typically Mo, S, P) and/or crystallization (implying typically Fe, Ni, Cr, Zn, Al, Ce, Cs, Ti…) leading to a two-phase molten glass (liquid-liquid or liquid-solid).Today CEA would like to explore the impact of solid particles in suspension in the molten glass and in the final glass canister on respectively the glass technological feasibility and its long-term behaviour.
The proposed study focuses on the molten glass technological feasibility. The presence of solid heterogeneities in the melt is known to lead to a modification of some of its physical properties – notably its rheology, as well as thermal and electrical conductivities, and can generate settling phenomena. Yet these properties are in the heart of vitrification process control and modelling. This study will then investigate the impact of crystals in the molten glass on vitrification process control and modelling.
Modeling of the spent fuel alteration mechanisms in a water-saturated environment with temperature effect
Modeling the alteration of spent nuclear fuel in the eventuality of an underwater interim storage in pools or a deep geologic disposal is essential for long-term prediction. In the event of a failed spent fuel assembly, corrosion processes can lead to a deterioration of the failed rod and to a radionuclide release into water. A geochemical model coupling chemistry to transport (reactive transport) was the subject of first developments in connection with deep geological disposal conditions using the CHESS-HYTEC code developed by the Ecole des Mines de Paris. This model makes it possible to take into account the main alteration mechanisms and associated kinetics while relying on robust thermodynamic data. It remains important to pursue these developments by studying the effect of temperature between 20 and 70 °C. Adapting this model to other alteration conditions like an underwater of spent fuel in dedicated pools for several decades is also a short-term objective.
Advanced tandem time of flight mass spectrometry for microelectronic applications
The CEA LETI seeks to recruit a post-doctoral researcher to work on the development of advanced time of flight secondary ion mass spectrometry applications (TOF-SIMS). The candidate will work on a new TOF-SIMS instrument equipped with tandem MS spectrometry, in-situ FIB and Argon cluster sputtering. The research project will be focused around the following topics
• Developing methods to correlate TOF-SIMS with AFM, XPS and Auger
• Improving the sensitivity and efficiency of fragmention of the tandem MS spectrometer
• Developing 3D FIB-TOF-SIMS applications and improving the spatial resolution.
The candidate will also have access to the wide range of state of the art instruments present on the nanocharacterisation platform as well as bespoke samples coming from the advanced technology branches developed at the LETI. The candidate will also benefit from a collaboration with the instrument supplier.