A theoretical framework for the task-based optimal design of Modular and Reconfigurable Serial Robots for rapid deployment

The innovations that gave rise to industrial robots date back to the sixties and seventies. They have enabled a massive deployment of industrial robots that transformed factory floors, at least in industrial sectors such as car manufacturing and other mass production lines.

However, such robots do not fit the requirements of other interesting applications that appeared and developed in fields such as in laboratory research, space robotics, medical robotics, automation in inspection and maintenance, agricultural robotics, service robotics and, of course, humanoids. A small number of these sectors have seen large-scale deployment and commercialization of robotic systems, with most others advancing slowly and incrementally to that goal.

This begs the following question: is it due to unsuitable hardware (insufficient physical capabilities to generate the required motions and forces); software capabilities (control systems, perception, decision support, learning, etc.); or a lack of new design paradigms capable to meet the needs of these applications (agile and scalable custom-design approaches)?

The unprecedented explosion of data science, machine learning and AI in all areas of science, technology and society may be seen as a compelling solution, and a radical transformation is taking shape (or is anticipated), with the promise of empowering the next generations of robots with AI (both predictive and generative). Therefore, research can tend to pay increasing attention to the software aspects (learning, decision support, coding etc.); perhaps to the detriment of more advanced physical capabilities (hardware) and new concepts (design paradigms). It is however clear that the cognitive aspects of robotics, including learning, control and decision support, are useful if and only if suitable physical embodiments are available to meet the needs of the various tasks that can be robotized, hence requiring adapted design methodologies and hardware.

The aim of this thesis is thus to focus on design paradigms and hardware, and in particular on the optimal design of rapidly-produced serial robots based on given families of standardized « modules » whose layout will be optimized according to the requirements of the tasks that cannot be performed by the industrial robots available on the market. The ambition is to answer the question of whether and how a paradigm shift may be possible for the design of robots, from being fixed-catalogue to rapidly available bespoke type.

The successful candidate will enrol at the « Ecole Doctorale Mathématiques, STIC » of Nantes Université (ED-MASTIC), and he or she will be hosted for three years in the CEA-LIST Interactive Robotics Unit under supervision of Dr Farzam Ranjbaran. Professors Yannick Aoustin (Nantes) and Clément Gosselin (Laval) will provide academic guidance and joint supervision for a successful completion of the thesis.

A follow-up to this thesis is strongly considered in the form of a one-year Post-Doctoral fellowship to which the candidate will be able to apply, upon successful completion of all the requirements of the PhD Degree. This Post-Doctoral fellowship will be hosted at the « Centre de recherche en robotique, vision et intelligence machine (CeRVIM) », Université Laval, Québec, Canada.

Out-of-Distribution Detection with Vision Foundation Models and Post-hoc Methods

The thesis focuses on improving the reliability of deep learning models, particularly in detecting out-of-distribution (OoD) samples, which are data points that differ from the training data and can lead to incorrect predictions. This is especially important in critical fields like healthcare and autonomous vehicles, where errors can have serious consequences. The research leverages vision foundation models (VFMs) like CLIP and DINO, which have revolutionized computer vision by enabling learning from limited data. The proposed work aims to develop methods that maintain the robustness of these models during fine-tuning, ensuring they can still effectively detect OoD samples. Additionally, the thesis will explore solutions for handling changing data distributions over time, a common challenge in real-world applications. The expected results include new techniques for OoD detection and adaptive methods for dynamic environments, ultimately enhancing the safety and reliability of AI systems in practical scenarios.

High mobility mobile manipulator control in a dynamic context

The development of mobile manipulators capable of adapting to new conditions is a major step forward in the development of new means of production, whether for industrial or agricultural applications. Such technologies enable repetitive tasks to be carried out with precision and without the constraints of limited workspace. Nevertheless, the efficiency of such robots depends on their adaptation to the variability of the evolutionary context and the task to be performed. This thesis therefore proposes to design mechanisms for adapting the sensory-motor behaviors of this type of robot, in order to ensure that their actions are appropriate to the situation. It envisages extending the reconfiguration capabilities of perception and control approaches through the contribution of Artificial Intelligence, here understood in the sense of deep learning. The aim is to develop new decision-making architectures capable of optimizing robotic behaviors for mobile handling in changing contexts (notably indoor-outdoor), and for carrying out a range of precision tasks.

Top