Out-of-Distribution Detection with Vision Foundation Models and Post-hoc Methods

The thesis focuses on improving the reliability of deep learning models, particularly in detecting out-of-distribution (OoD) samples, which are data points that differ from the training data and can lead to incorrect predictions. This is especially important in critical fields like healthcare and autonomous vehicles, where errors can have serious consequences. The research leverages vision foundation models (VFMs) like CLIP and DINO, which have revolutionized computer vision by enabling learning from limited data. The proposed work aims to develop methods that maintain the robustness of these models during fine-tuning, ensuring they can still effectively detect OoD samples. Additionally, the thesis will explore solutions for handling changing data distributions over time, a common challenge in real-world applications. The expected results include new techniques for OoD detection and adaptive methods for dynamic environments, ultimately enhancing the safety and reliability of AI systems in practical scenarios.

High mobility mobile manipulator control in a dynamic context

The development of mobile manipulators capable of adapting to new conditions is a major step forward in the development of new means of production, whether for industrial or agricultural applications. Such technologies enable repetitive tasks to be carried out with precision and without the constraints of limited workspace. Nevertheless, the efficiency of such robots depends on their adaptation to the variability of the evolutionary context and the task to be performed. This thesis therefore proposes to design mechanisms for adapting the sensory-motor behaviors of this type of robot, in order to ensure that their actions are appropriate to the situation. It envisages extending the reconfiguration capabilities of perception and control approaches through the contribution of Artificial Intelligence, here understood in the sense of deep learning. The aim is to develop new decision-making architectures capable of optimizing robotic behaviors for mobile handling in changing contexts (notably indoor-outdoor), and for carrying out a range of precision tasks.

Top