Nitrogenase Active Site Assembly: What Distinguishes a Nitrogenase from a Scaffold
The challenges posed by climate change and soil degradation call for urgent solutions to reduce greenhouse gas emissions and reliance on nitrogen fertilizers while ensuring sufficient crop yields to feed a growing global population. A natural solution lies in the use of nitrogenase, a bacterial enzyme capable of converting atmospheric nitrogen into ammonia, which can be directly assimilated by plants. However, the biosynthesis of its metal cofactor, FeMo-co, is a complex process that requires the coordinated action of numerous proteins.
This PhD project aims to streamline this complex process by studying simplified nitrogenase systems found in certain organisms, which use fewer proteins, notably by combining multiple functions into single proteins. By conducting comparative structural and functional studies, we seek to understand how these simplified systems work and how they can be adapted for use in crops like cereals, potentially allowing large-scale cultivation without heavy nitrogen fertilizer use.
This project is a collaboration between leading teams at CEA’s Institute of Structural Biology and CSIC Madrid, specializing in metalloprotein structure-function analysis and the biochemistry and genetics of nitrogenase assembly. The successful candidate will work in a cutting-edge research environment, gaining international experience and valuable skills for a future career in academic research or R&D.