Infertility is a growing problem in all developed countries. The standard methods for the diagnostic of male infertility examine the concentration, motility and morphological anomalies of individual sperm cells. However, 40% of male infertility cases remain unexplained with the standard diagnostic tools.
In this thesis, we will explore the possibility to determine the male infertility causes from the detailed analysis of 3D trajectories and morphology of sperms swimming freely in the environment mimicking the conditions in the female reproductive tract. For this challenging task, we will develop a dedicated microscope based on holography for fast imaging and tracking of individual sperm cells. Along with classical numerical methods, we will use up-to date artificial intelligence algorithms for improving the imaging quality as well as for analysis of multi-dimensional data.
Throughout the project we will closely collaborate with medical research institute (CHU/IAB) specialized in Assisted Reproductive Technologies (ART). We will be examining real patient samples in order to develop a new tool for male infertility diagnosis.
Development and multiparametric monitoring of a microfluidic chip of the blood-brain barrier model
The blood-brain barrier (BBB) protects the brain by controlling exchanges between the blood and nervous tissue. However, current models struggle to accurately reproduce its complexity. This thesis aims at developing and evaluating a microfluidic chip of BBB model incorporating a real-time monitoring system that combines simultaneous optical and electrical measurements. The device will enable the study of permeability, transendothelial resistance and cellular response to various pharmacological or toxic stimuli. By combining microtechnologies, cell co-cultures and integrated sensors, this model of biological avatar will offer a more physiological and dynamic approach than conventional in vitro systems to improve understanding of the diffusion/permeation phenomena of therapeutic molecules. This project will contribute to the development of predictive tools for neuropharmacology, toxicology and research into neurodegenerative diseases.
Active matter: self-organization of mitotic spindles
The mitotic spindle is an essential cytoskeletal structure that enables chromosome separation during cell division. This project seeks to identify the physical principles that control spindle assembly by using a simplified biomimetic system composed solely of microtubules and molecular motors. We will use motors of opposite polarities combined with dynamic microtubules to understand how these components organize through active phase separation. Indeed, preliminary experiments have demonstrated that such reconstituted systems can spontaneously form bipolar structures resembling mitotic spindles. We now propose to encapsulate these molecular components in compartments of controlled geometry to reconstruct a minimal bipolar structure capable of elongating, retracting, and separating its organizing poles. This multidisciplinary approach will combine biochemical and physicochemical techniques, advanced microscopy, and quantitative analysis of the spatial and temporal evolution of the system. The experimental work will be closely coupled with theoretical modeling in collaboration with Prof. Jean-François Joanny (Collège de France) to develop a physical model of active phase separation that will provide better understanding of self-organization mechanisms at the subcellular scale in living organisms.
Endothelial-fibroblast interactions in diabetic foot ulcer: deciphering the intercellular communication responsible for the chronic wound persistence
Diabetic foot ulcer (DFU), a severe complication of diabetes affecting approximately 18.6 million people worldwide each year, is associated with high rates of amputation and mortality. Like other chronic wounds, DFUs exhibit impaired healing due to a dysregulated cascade of cellular signalling and behavioural events that normally ensure rapid closure of the skin barrier. Among the key cellular players, fibroblasts and endothelial cells are central to the proliferative and remodelling phases of wound repair – processes that are notably dysfunctional in chronic wounds. Although endothelial-fibroblast crosstalk is recognized as an essential driver of normal skin healing, the specific mechanisms governing their interaction in DFU is poorly understood.
The main objective of this PhD project is to decipher the intercellular communication between endothelial cells and fibroblasts that underlies the chronicity of DFU. Particular attention will be devoted to extracellular vesicle-associated microRNAs (miRNAs), which are pivotal regulators of intercellular communication through modulation of gene expression in recipient cells. By characterizing the repertoire of pro- and anti-healing miRNAs exchanged between endothelial cells and fibroblasts, this project seeks to uncover novel molecular targets and therapeutic strategies to promote wound repair in diabetic foot ulcers.
The combined effects of hypoxia and matrix stiffness on the pathophysiology of pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease characterized by excessive extracellular matrix (ECM) deposition, increased tissue stiffness, and localized hypoxia. These alterations disrupt cell–cell interactions within the alveolo-capillary barrier and drive fibrotic progression. This project aims to investigate, under controlled in vitro conditions, the combined impact of mechanical stiffness and hypoxic stress on the fate and phenotype of pulmonary cell types and their intercellular communication. To achieve this, biomimetic polyacrylamide hydrogels with tunable stiffness and specific ECM protein coatings will be developed to support the co-culture of alveolar epithelial cells, endothelial cells, fibroblasts, and macrophages. Cellular responses will be assessed through proteomics, imaging, and secretome profiling. The goal is to identify key mechano- and chemo-dependent pro-fibrotic factors, providing new insights into IPF pathogenesis and opening avenues for targeted therapeutic strategies and lung tissue regeneration.
PtSeipin : linking lipid droplets biogenesis and degradation in the diatom Phaeodactylum tricornutum
Microalgae encompass a wide diversity of organisms and have attracted increasing interest due to their ability to produce biomolecules of biotechnological and industrial relevance. In particular, they can accumulate oil within lipid droplets (LDs) in response to abiotic stresses such as nitrogen deprivation. This oil accumulation holds great potential for biofuel production.We recently demonstrated that knockout of the gene encoding Seipin, a protein involved in LD biogenesis, leads to a strong oil accumulation in the diatom Phaeodactylum tricornutum. Moreover, this accumulation appears to result from an absence of LD degradation in the Seipin-deficient mutants. These findings suggest that, in this diatom, LDs are programmed to undergo degradation soon after their formation, thus inhibiting LD degradation could prove a promising strategy to increase their oil content.This project aims to elucidate the mechanisms underlying LD degradation and, more specifically, the connections between their biogenesis and degradation. Three main research axes will be pursued:
1. Identify PtSeipin interaction partners involved in LD degradation, using both candidate-based and unbiased approaches.
2. Characterize the LD degradation pathways disrupted in PtSeipin knockout mutants by combining electron microscopy with transcriptomic and proteomic analyses.
3. Investigate how microalgae utilize oil during the recovery phase after stress, through fluxomic approaches.
Combination of ionizing radiation and radio-enhancing molecules in breast cancer models
The proposed program aims to evaluate the efficacy of molecules enhancing the effects of radiotherapy, in models of breast cancer. Several molecules targeting and inhibiting the Base Excision Repair pathway will be tested for radiopotentiation efficacy in the in vitro and in vivo models.
The proposed inhibitors are already being investigated in vitro, both in the laboratory and by collaborators. We have shown that inhibition of the mechanisms targeted leads to an impairment in DNA damage repair following genotoxic stress. During this project, we will evaluate the effects of inhibitors on DNA damage repair induced by irradiation of different types (conventional, ultra-high dose rate, even extreme dose rate) and the associated mechanisms.
Variability in response to therapeutic combinations is frequently observed when moving from in vitro to in vivo models. We will therefore evaluate the inhibitors on cell line models well characterized in the laboratory, and corresponding to different breast cancer subtypes. On the other hand, the studies will be completed by a validation of the effects observed in vitro on a murine model of breast cancer. This xenograft model, developed in immunocompetent animals, will enable us to monitor the clinical, histological and immune response of the animals and their tumors, in order to confirm the interest of the molecules for therapeutic application in support of radiotherapy.
The proposed program will benefit from the laboratory's collaborations with physicists and chemists, and IRCM's experimental facilities and platforms (irradiation, animal experimentation, microscopy, cytometry, etc.).