Modeling and experimental validation of a catalytic reactor and optimization of the process for the production of e-Biofuels

During the past 20 years, « Biomass-to-liquid » processes have considerably grown. They aim at producing a large range of fuels (gasoline, kerozene, diesel, marine diesel oil) by coupling a biomass gazéification into syngaz unit (CO+CO2+H2 mixture) and a Fischer-Tropsch (FT) synthesis unit. Many demonstration pilots have been operated within Europe. Nevertheless, the low H/C ratio of bio-based syngaz from gasification requires the recycling of a huge quantity of CO2 at the inlet of gaseification process, which implies complex separation and has a negative impact on the overall valorization of biobased carbon. Moreover, the possibility to realize, in the same reactor, the Reverse Water Gas Shift (RWGS) and Fischer-Tropsch (FT) reaction in the same reactor with promoted iron supported catalysts has been proved (Riedel et al. 1999) and validated in the frame of a CEA project (Panzone, 2019).
Therefore, this concept coupled with the production of hydrogen from renewable electricity opens new opportunities to better valorize the carbon content of biomass.
The PhD is based on the coupled RWGS+FT synthesis in the same catalytic reactor. On the one hand a kinetic model will be developed and implemented in a multi-scale reactor model together with hydrodynamic and thermal phenomena. The model will be validated against experimental data and innovative design will be proposed and simulated. On the other hand, the overall PBtL process will be optimized in order to assess the potential of such a process.

Brines for metal recycling

Critical metals are essential for a range of technologies that are vital to reduce our carbon dioxide emissions. However, the global recycling rate for metals contained in electronic waste is below 20%, indicating that electronic waste is a relatively untapped source of metals. Additionally, it is increasingly urgent to develop effective processes for recycling waste from products like solar panels, as the volume of waste solar pannels generated is set to rise significantly in the coming years. Currently, conventional hydrometallurgical methods often rely on toxic aqueous solutions to dissolve metals, which presents substantial environmental challenges.

This project proposes an innovative alternative by using concentrated brines (aqueous salt solutions) to oxidize and dissolve metals. This thesis will investigate the fundamental properties of brines and their ability to dissolve metals through various techniques, particularly electrochemical methods. Artificial intelligence methods developed within the lab will be employed to screen a wide range of brines that would allow metal dissolution. Subsequently, brine-based recycling processes will be developed to recover metals from printed circuit boards and solar panels. Finally, metal separation and the treatment of used brines will be explored using membrane and electrochemical processes.

Understanding the mechanisms of direct CO2 hydrogenation using (Na,K)FeOx catalysts via theoretical-experimental coupling

In the context of climate change, we need to reduce our CO2 emissions by using less energy. Another approach is to capture, store and use CO2, with the aim of moving towards a circular carbon economy and, ultimately, defossilization. With this in mind, the direct hydrogenation of CO2 enables it to be transformed into molecules of interest such as hydrocarbons, via the coupling of the reverse water gas shift (RWGS) reaction and Fischer-Tropsch synthesis (FTS).

Computational operando catalysis has recently emerged as a reasoned alternative to the development of new catalysts, thanks to a multi-scale approach from the atom down to the active particle, to model catalyst selectivity and activity. New tools combining ab initio simulations (DFT) and molecular dynamics (MD) via machine learning algorithms bridge the gap between the precision of DFT calculations and the power of atomistic simulations. Current bifunctional catalysts (active for RWGS, and FTS) for direct CO2 hydrogenation are based on doped iron oxides (metal promoters).

The aim of this project is the theoretical study of Na-FeOx and K-FeOx catalysts doped with Cu, Mn, Zn and Co, in 4 stages: DFT simulations (adsorption energies, density of states, energy barriers, transition states), microkinetic modeling (reaction constants, TOF), construction of interatomic potentials by DFT/machine learning coupling, simulation of whole particles (selectivity, activity, microscopic quantities).

This theoretical study will go hand in hand with the synthesis and experimental measurements of the studied catalysts, and optimized catalysts emerging from the computational results. All the accumulated data (DFT, MD, catalytic properties) will be fed into a database, which can eventually be exploited to identify descriptors of interest for CO2 hydrogenation.

Redox behavior of technetium in the innovative PUMAS process: kinetic and speciation study

Technetium (Tc), an artificial radioactive element, makes up about 6% of the fission products in spent nuclear fuel. The PUREX process is used to separate uranium and plutonium from other fission products. However, Tc is co-extracted with these actinides, requiring an additional stripping step. In this stage, a stabilizing agent, hydrazinium nitrate (NH), is used, but due to its toxicity and CMR classification (Carcinogenic, Mutagenic, Reprotoxic), it is being replaced by less toxic alternatives such as oximes. Although promising, oximes exhibit slower stripping kinetics compared to NH. In the context of the PUMAS process, this thesis aims to understand the complex redox mechanisms of Tc and the kinetic differences between oximes and NH. The PhD student will study the reduced forms of Tc and analyze the reduction kinetics in the presence of U(IV) and anti-nitrous agents. A methodology will be developed to characterize the oxidation states of Tc, and reaction rate constants will be determined as a function of temperature and reactant concentrations.
The candidate will work closely with the supervising team to develop autonomy, adaptability, and the ability to propose innovative ideas. By the end of this journey, the candidate will have gained not only advanced technical skills but also abilities in project management, collaborative work, and scientific writing and communication. These competencies will provide strong prospects for a career in academic research or industry.

Molecular Dynamics Simulation of Plutonium(IV) in Solution

With the revival of nuclear power in France, the CEA is playing a key role in the nuclear industry of the future. In this context, engineers and researchers are mobilised to meet the growing needs of this industry. Plutonium is a key element in the nuclear fuel cycle. Acquiring molecular data is crucial to optimising and rationalising the mechanisms involved in separating this element.
Plutonium(IV) is one of the most common cationic forms in the nuclear fuel cycle. Its study by theoretical chemistry presents difficulties both in ab initio modelling (occupied f-block orbitals) and in classical atomistic simulations. In classical molecular dynamics simulation, the models necessarily require the addition of the polarisation effect, and sometimes even the addition of charge transfer, in order to reproduce the system's behaviour correctly. As a result, classical simulations containing plutonium (IV) are almost completely absent from the scientific literature. In addition, the speciation of this cation is sensitive to the acidity of the medium, which has to be taken into account in the simulations, adding a further difficulty.
The aim of this thesis is to use molecular dynamics (classical and ab initio) to simulate solutions containing plutonium, taking into account the effect of acidity. The PhD student will be faced with two main issues: the choice or development of a force field for the Pu4+ cation, and the design of a method for including acidity in the solutions. A crucial step in the process will be to compare the results with the available experimental data in order to conclude on the ability of the models to reproduce the experimental data. This thesis will be carried out in a multidisciplinary laboratory, combining experimental chemistry and theoretical modelling, while conducting both applied and fundamental research.

Impact of solvent nanostructure on uranium precipitation: a physicochemical approach for nuclear recycling

Recycling nuclear fuel is a major challenge to ensure a sustainable energy future. The CEA, in partnership with Orano and EDF, has been developing a new process for separating plutonium-rich fuels for several years. The goal is to replace the current TBP/TPH system with a redox-free process, better suited for the reprocessing of MOX or fast neutron reactors (FNR).

In this context, this thesis proposes to study the behavior of organic solvents loaded with uranium to understand and prevent the formation of precipitates, a phenomenon that could impact the performance of industrial processes. The scientific approach will focus on the supramolecular scale and compare different monoamides to evaluate the effect of alkyl chains on the physicochemical properties and nanostructure of the solutions.

The candidate should hold a Master's degree (Master 2) in chemistry, physical chemistry, or materials science. Skills in analytical chemistry, spectroscopy (NMR, FTIR), and scattering techniques (SANS, SAXS) will be highly valued. By joining this project, you will become part of the CEA's cutting-edge laboratories (ICSM/LTSM and DMRC/SPTC/LILA), equipped with world-class facilities for studying radioactive samples. You will benefit from multidisciplinary supervision, including opportunities for international collaborations. This thesis represents a major scientific challenge with direct industrial applications, offering you valuable experience in the field of nuclear separation and processing technologies.

Radiolytic Degradation of N,N-dialkylamides: Effects on Metal Complexation

N,N-dialkylamides (or monoamides) are promising extractant molecules for the development of new processes for nuclear fuel reprocessing. In this context, these extractant molecules are exposed to radiolysis caused by ionizing radiation from radionuclides, which leads to the formation of new compounds through the breaking or modification of chemical bonds. Such changes in solution composition can alter the extractive properties, particularly in terms of efficiency and selectivity.
This thesis aims to study the impact of radiolysis on the speciation of actinide-ligand complexes in solution, in order to improve the understanding of the phenomena observed under ionizing radiation. We propose an approach combining experimental studies (chromatographic and spectroscopic techniques) with theoretical calculations (such as bond dissociation energies, identification of probable radical attack sites, stability of metal-ligand complexes, etc.) to describe the molecular speciation of species in solution. Organic compounds formed during radiation and the metallic complexes will be characterized to evaluate the modifications caused by radiation.

Perovskite devices for solar hydrogen production

Project Overview:
The PhD thesis is part of the ICARUS European project, aiming to develop efficient solar energy conversion systems for a carbon-neutral future. The project focuses on integrating photoelectrochemical (PEC) water splitting and photovoltaic (PV) power generation.

Key Objectives:
•Develop innovative metal halide perovskite solar cells with tunable bandgaps for broader light absorption.
•Optimize printed carbon-based solar cells and scaffolds for improved conductivity, mechanical resistance, and durability.
•Incorporate innovative carbon counter electrodes into perovskite devices.
•Upscale and manufacture solar modules.
•Integrate the developed modules into a final PEC prototype.

Research Focus:
The PhD candidate will primarily focus on:
•Printed carbon-based solar cells: Optimizing ink properties, investigating the behavior of printed conductive ink under various conditions, and characterizing conductivity and mechanical resistance.
•Perovskite devices: Incorporating innovative carbon counter electrodes and evaluating their performance and stability.
•Module manufacturing: Upscaling and manufacturing solar modules based on the developed technologies.
•PEC prototype integration: Contributing to the final integration of the PEC prototype.

Expected Outcomes:
The research is expected to contribute to the development of highly efficient and sustainable solar energy conversion systems, supporting the transition to a carbon-neutral future. The findings will have implications for both academic research and industrial applications.

Study of the synthesis and thermodynamic properties of the (An,Zr)O2 and (Zr,An)SiO4 compounds

In the event of a serious nuclear accident, the fuel in the reactor core may melt, resulting in the formation of a compound known as corium. Cases of major accidents and prototypical corium formation experiments have identified the formation of key compounds such as mixed oxides (U,Zr)O2 formed by interaction of the fuel with the zircaloy cladding and silicates (Zr,U)SiO4 formed by interaction of the corium with structural materials. In the case of MOx, (U,Pu)O2 fuels, corium formation could lead to the formation of equivalent phases with significant plutonium contents. However, experimental thermodynamic data on such compounds, which would enable their behaviour to be assessed, are currently non-existent. In this context, determining the conditions for synthesising such compounds with a good degree of purity is essential for acquiring such data. The synthesis of (Zr,Pu)O2 and (Zr,Pu)SiO4 solid solutions is therefore an essential first step before studying (Zr,U,Pu)O2 and (Zr,U,Pu)SiO4 systems.
The aim of this PhD thesis will be to determine the conditions suitable for the synthesis of these compounds, to carry out a series of characterisations enabling their purity to be assessed and their thermodynamic properties to be established. To achieve this, experiments will be carried out on the ATALANTE facility and a multi-technique characterisation approach will be chosen (XRD, Raman and infrared spectroscopies, SEM, synchrotron characterisation techniques, etc.). Solubility tests in a controlled environment will then be set up and calorimetric measurements carried out as part of international collaborations.

Study of MOx and model compounds leaching in underwater storage conditions

This thesis deals with nuclear fuel recycling in France, with a focus on the multi-recycling of uranium and plutonium from MOX fuels, planned for 2040. Spent fuel is stored underwater in pools, where a cladding defect could lead to water contamination and complicate reprocessing. This thesis proposes to study the leaching of these fuels and the appearance of secondary phases under conditions simulating storage. The work is divided into three parts: preparation of model compounds, study of chemical durability of model and industrial materials, and analysis of secondary phases forming on the surface of irradiated fuels. The aim is to gain a better understanding of the stability of these phases as a function of chemical and irradiation conditions, as well as their transformation mechanisms. The results will enable us to develop models for the behavior of defective rods over several decades, contributing to safer and more efficient management of irradiated fuels.

Top