Electromagnetic Signature Modeling and AI for Radar Object Recognition
This PhD thesis offers a unique opportunity to work at the crossroads of electromagnetics, numerical simulations, and artificial intelligence, contributing to the development of next-generation intelligent sensing and recognition systems. The intern will join the Antenna & Propagation Laboratory at CEA-LETI, Grenoble (France), a world-class research environment equipped with state-of-the-art tools for propagation channel characterization and modelling. A collaboration with the University of Bologna (Italy) is planned during the PhD.
This PhD thesis aims to develop advanced electromagnetic models of near-field radar backscattering, tailored to radar and Joint Communication and Sensing (JCAS) systems operating at mmWave and THz frequencies. The research will focus on the physics-based modeling of the radar signatures of extended objects, accounting for near-field effects, multistatic and multi-antenna configurations, as well as the influence of target materials and orientations. These models will be validated through electromagnetic simulations and dedicated measurement campaigns, and subsequently integrated into scene-level and multipath propagation simulation tools based on ray tracing. The resulting radar signatures will be exploited to train artificial intelligence algorithms for object recognition, material property inference, and radar imaging. In parallel, physics-assisted AI approaches will be investigated to accelerate electromagnetic simulations and reduce their computational complexity. The final objective of the thesis is to integrate radar backscattering-based information into a 3D Semantic Radio SLAM framework, in order to improve localization, mapping, and environmental understanding in complex or partially obstructed scenarios.
We are seeking a student at engineering school or Master’s level (MSc/M2), with a strong background in signal processing, electromagnetics, radar, or telecommunications. An interest in artificial intelligence, physics-based modeling, and numerical simulation is expected. Programming skills in Matlab and/or Python are appreciated, as well as the ability to work at the interface between theoretical models, simulations, and experimental validation. Scientific curiosity, autonomy, and strong motivation for research are essential.The application must include a CV, academic transcripts, and a motivation letter.
Enhanced Quantum-Radiofrequency Sensor
Through the Carnot SpectroRF exploratory project, CEA Leti is involved in radio-frequency sensor systems based on atomic optical spectroscopy. The idea behind the development is that these systems offer exceptional detection performance. These include high sensitivity´ (~nV.cm-1.Hz-0.5), very wide bandwidths (MHz- THz), wavelength-independent size (~cm) and no coupling with the environment. These advantages surpass the capabilities of conventional antenna-based receivers for RF signal detection.
The aim of this thesis is to investigate a hybrid approach to the reception of radio-frequency signals, combining atomic spectroscopy measurement based on Rydberg atoms with the design of a close environment based on metal and/or charged material for shaping and local amplification of the field, whether through the use of resonant or non-resonant structures, or focusing structures.
In this work, the main scientific question is to determine the opportunities and limits of this type of approach, by analytically formulating the field limits that can be imposed on Rydberg atoms, whether in absolute value, frequency or space, for a given structure. The analytical approach will be complemented by EM simulations to design and model the structure associated with the optical atomic spectroscopy bench. Final characterization will be based on measurements in a controlled electromagnetic environment (anechoic chamber).
The results obtained will enable a model-measurement comparison to be made. Analytical modelling and the resulting theoretical limits will give rise to publications on subjects that have not yet been investigated in the state of the art. The structures developed as part of this thesis may be the subject of patents directly exploitable by CEA.
Novel architecture and signal processing for mobile optical telecommunications
Free-Space Optical Communications (FSO) rely on transmitting data via light between two distant points, eliminating the need for fibers or cables. This approach is particularly valuable when wired connections are impractical or prohibitively expensive.
However, these links are highly susceptible to atmospheric conditions—fog, rain, dust, and thermal turbulence—which attenuate or distort the light beam, significantly degrading communication quality. Current solutions remain costly and limited, both in terms of optical compensation hardware and signal processing algorithms.
Within this framework, the thesis aims to design high-performance, robust mobile optical links capable of adapting to dynamic and disturbed environments. The study will focus on leveraging Silicon-based Optical Phased Arrays (OPAs)—a technology derived from low-cost LiDAR systems—offering a promising path toward compact, integrated, and cost-effective architectures.
The primary focus of the research will be developing advanced algorithmic approaches for signal processing and compensation. The PhD candidate will be tasked with designing a dedicated simulation environment to evaluate and validate architectural choices and algorithmic strategies before practical experimentation.
The overarching goal is to propose an integrated, flexible, and reliable architecture that ensures uninterrupted optical communication in motion, with potential applications in aerospace, space, and terrestrial domains.
Multipath-based Cooperative Simultaneous Localization & Mapping through Machine Learning
The goal of this PhD is to explore the potential of machine learning (ML) tools for simultaneous localization and mapping (SLAM) applications, while leveraging multipath radio signals between cooperative wireless devices.
The idea is to identify characteristic features of the propagation channels observed over multiple radio links, so as to jointly determine the relative positions of the mobile radio devices, as well as those of scattering objects present in their vicinity. Such radio features typically rely on the arrival times of multipath echos of the transmitted signals. The envisaged approach is expected to benefit from multipath correlation as the radio devices are moving, as well as from spatial diversity and information redundancy through multi-device cooperation. The developed solution will be evaluated on both real measurements collected with integrated Ultra Wideband devices in a reference indoor environment, and synthetic data generated with a Ray-Tracing simulator.
Possible applications of this research concern group navigation in complex and/or unknown environments (incl. fleets of drones or robots, firefighters…).
A formal framework for the specification and verification of distributed processes communication flows in clouds
Clouds are constituted of servers interconnected via the Internet, on which systems can be implemented, making use of applications and databases deployed on the servers. Cloud-based computing is gaining in popularity, and that includes the context of critical systems. As a result, it is useful to define formal frameworks for reasoning about cloud-based systems. One requirement about such a framework is that it enables reasoning about the concepts manipulated in a cloud, which naturally includes the ability to reason about distributed systems, composed of subsystems deployed on different machines and interacting through message passing to implement services. In this context, the ability to reason about communication flows is central. The aim of this thesis is to define a formal framework dedicated to the specification and verification of systems deployed on clouds. This framework will capitalize on the formal framework of "interactions". Interactions are models dedicated to the specification of communication flows between different actors in a system. The thesis work will study how to define structuring (enrichment, composition) and refinement operators to enable the implementation of classical software engineering processes based on interactions.
Analysis and design of dispersion-engineered impedance surfaces
Dispersion engineering (DE) refers to the control of how electromagnetic waves propagate in a structure by shaping the relationship between frequency and phase velocity. Using artificially engineered materials and surfaces, this relationship can be tailored to achieve non-conventional propagation behaviors, enabling precise control of dispersive effects in the system. In antenna design, dispersion engineering can enhance several key aspects of radiation performance, including gain bandwidth, beam-scanning accuracy, and in general the reduction of distortions that arise when the operating frequency changes. It can also enable additional functionalities, such as multiband operation or multifocal behavior in lens- and reflector-based antennas.
This thesis aims to investigate the underlying physics governing the control of phase and group velocities in two-dimensional artificial surfaces with frequency-dependent effective impedance properties. A particular emphasis will be placed on spatially fed architectures, such as transmitarrays and reflectarrays, where dispersion plays a crucial role. The objective is to derive analytical formulations within simultaneously control of both group and phase delay, develop general models, and assess the fundamental limitations of such systems in radiation performance. This work is especially relevant for high-gain antenna architectures, where the state of the art remains limited. Current dispersion-engineered designs are mostly narrowband, and no compact high-gain solution (> 35 dBi) has yet overcome dispersion-induced degradations, which lead to gain drop and beam squint.
The student will develop theoretical and numerical tools, investigate new concepts of periodic unit cells for the impedance surfaces, and design advanced antenna architectures exploiting principles such as true-time delay, shared-aperture multiband operation, or near-field focsuing with minimized chromatic aberrations. The project will also explore alternative fabrication technologies to surpass the constraints of standard PCB processes and unlock new dispersion capabilities.
AI-Driven Network Management with Large Language Models LLMs
The increasing complexity of heterogeneous networks (satellite, 5G, IoT, TSN) requires an evolution in network management. Intent-Based Networking (IBN), while advanced, still faces challenges in unambiguously translating high-level intentions into technical configurations. This work proposes to overcome this limitation by leveraging Large Language Models (LLMs) as a cognitive interface for complete and reliable automation.
This thesis aims to design and develop an IBN-LLM framework to create the cognitive brain of a closed control loop on the top of an SDN architecture. The work will focus on three major challenges: 1) developing a reliable semantic translator from natural language to network configurations; 2) designing a deterministic Verification Engine (via simulations or digital twins) to prevent LLM "hallucinations"; and 3) integrating real-time analysis capabilities (RAG) for Root Cause Analysis (RCA) and the proactive generation of optimization intents.
We anticipate the design of an IBN-LLM architecture integrated with SDN controllers, along with methodologies for the formal verification of configurations. The core contribution will be the creation of an LLM-based model capable of performing RCA and generating optimization intents in real-time. The validation of the approach will be ensured by a functional prototype (PoC), whose experimental evaluation will allow for the precise measurement of performance in terms of accuracy, latency, and resilience.