Development of 4D-STEM with variable tilts
The development of 4D-STEM (Scanning Transmission Electron Microscopy) has profoundly transformed transmission electron microscopy (TEM) by enabling the simultaneous recording of spatial (2D) and diffraction (2D) information at each probe position. These so-called “4D” datasets make it possible to extract a wide variety of virtual contrasts (bright-field imaging, annular dark-field imaging, ptychography, strain and orientation mapping) with nanometer-scale spatial resolution.
In this context, 4D-STEM with variable beam tilts (4D-STEMiv) is an emerging approach that involves sequentially acquiring electron diffraction patterns for different incident beam tilts. Conceptually similar to precession electron diffraction (PED), this method offers greater flexibility and opens new possibilities: improved signal-to-noise ratio, faster two-dimensional imaging at higher spatial resolution, access to three-dimensional information (orientation, strain, phase), and optimized coupling with spectroscopic analyses (EELS, EDX).
The development of 4D-STEMiv thus represents a major methodological challenge for the structural and chemical characterization of advanced materials, particularly in the fields of nanostructures, two-dimensional materials, and ferroelectric systems.
Mechanical degradation of Solid Oxide Cells: impact of operating and failure modes on the performances
Solid oxide cells (SOCs) are electrochemical devices operating at high temperature that can directly convert fuel into electricity (fuel cell mode – SOFC) or electricity into fuel (electrolysis mode – SOEC). In recent years, the interest on SOCs has grown significantly thanks to their wide range of technological applications that could offer innovative solutions for the transition toward a renewable energy market. However, despite of all their advantages, the large-scale industrialization of this technology is still hindered by the durability of SOCs. Indeed, the SOCs remain limited by various degradation phenomena including mechanical damage in the electrodes. For instance, the formation of micro-cracks in the so-called ‘hydrogen’ electrode is a major source of degradation. However, the precise mechanism and the full impact of the micro-cracks on the electrode performances are still unknown. By a multi-physic modelling approach, it is proposed in this thesis (i) to simulate the damage in the microstructure of the electrode and (ii) to calculate its impact on the loss of performances. Once the model validated on dedicated experiments, a sensitivity analysis will be conducted to provide relevant guidelines for the manufacturing of improved robust and performant electrodes.
Development and multiparametric monitoring of a microfluidic chip of the blood-brain barrier model
The blood-brain barrier (BBB) protects the brain by controlling exchanges between the blood and nervous tissue. However, current models struggle to accurately reproduce its complexity. This thesis aims at developing and evaluating a microfluidic chip of BBB model incorporating a real-time monitoring system that combines simultaneous optical and electrical measurements. The device will enable the study of permeability, transendothelial resistance and cellular response to various pharmacological or toxic stimuli. By combining microtechnologies, cell co-cultures and integrated sensors, this model of biological avatar will offer a more physiological and dynamic approach than conventional in vitro systems to improve understanding of the diffusion/permeation phenomena of therapeutic molecules. This project will contribute to the development of predictive tools for neuropharmacology, toxicology and research into neurodegenerative diseases.
Understanding the mechanisms of oxidative dissolution of (U,Pu)O2 in the presence of Ag(II) generated by ozonation
The recycling of plutonium contained in MOx fuels, composed of mixed uranium and plutonium oxides (U,Pu)O2, relies on a key step: the complete dissolution of plutonium dioxide (PuO2). However, PuO2 is known to dissolve only with great difficulty in the concentrated nitric acid used in industrial processes. The addition of a strongly oxidizing species such as silver(II) significantly enhances this dissolution step—this is the principle of oxidative dissolution. Ozone (O3) is used to continuously regenerate the Ag(II) oxidant in solution.
Although this process has demonstrated its efficiency, the mechanisms involved remain poorly understood and scarcely documented. A deeper understanding of these mechanisms is essential for any potential industrial implementation.
The aim of this PhD work is to gain insight into the interaction mechanisms within the HNO3/Ag/O3/(U,Pu)O2 system. The research will be based on a parametric experimental study of increasing complexity. First, the mechanisms of generation and consumption of Ag(II) will be investigated in the simpler HNO3/Ag/O3 system. In a second phase, the influence of various parameters on the oxidative dissolution of (U,Pu)O2 will be examined. The results will lead to the development of a kinetic model describing the dissolution process as a function of the studied parameters.
At the end of this PhD, the candidate—preferably with a background in physical chemistry—will have acquired advanced expertise in experimental techniques and kinetic modeling, providing a strong foundation for a career in academic research or industrial R&D, both within and beyond the nuclear sector.
III-V semiconductor nanoplatelets
Colloidal semiconductor nanoplatelets (NPLs) are a class of two-dimensional nanostructures that have electronic and optical properties distinct from those of spherical quantum dots (QDs). They exhibit strong quantum confinement in a single dimension, their thickness, which can be controlled on the monolayer level using solution chemistry. As a result, NPLs emit light with an extremely narrow spectral width and at the same time, they have a very high absorption coefficients. These properties make them ideal candidates for various applications (e.g., light-emitting diodes for low-power-consumption displays, photocatalysis, single-photon emitters).
At present, only the synthesis of metal chalcogenide NPLs has been mastered. These materials either contain toxic elements (CdSe, HgTe, etc.) or have a large bandgap (ZnS, ZnSe). For these reasons, the development of synthesis methods for III-V semiconductor NPLs, such as InP, InAs and InSb is currently a major challenge. In this thesis, we will develop new synthetic approaches for the growth of InP NPLs, exploring different avenues and using in situ characterizations as well as machine learning assisted design of experiments. Numerical simulations will be used to determine the reactivity of precursors and to model the mechanisms inducing anisotropic growth.
Monitoring and modeling the evolution of microstructural properties during the fabrication of MOX fuel
The nuclear fuel MOX (Mixed OXide), a ceramic obtained from a mixture of uranium and plutonium oxides, represents a strategic alternative for the valorization of plutonium resulting from the reprocessing of spent fuel. MOX pellets are produced industrially using a powder metallurgy process combined with material densification through high-temperature sintering. The rejected products are reintroduced into the process in the form of "chamotte" powder. Yet, the influence of the content and nature of this chamotte on the microstructural stability of the material remains poorly understood, particularly during the pressing and sintering stages. This aspect is critical for both the mechanical integrity and the in-reactor behavior of MOX fuels. A better understanding of these phenomena, combined with refined modeling, would make it possible to optimize industrial processes and ultimately improve the reliability of these fuels.
The objective of this PhD project is to study and model the evolution of the microstructural properties of MOX fuel as a function of the proportion and nature of the chamotte added during fabrication. The thesis strategy will rely on an integrated approach combining experimental studies with numerical simulations. It will be based on multi-scale characterization of the microstructure, coupling imaging and spectroscopy techniques, as well as on the three-dimensional reconstruction of the microstructure from experimental 2D images. The ultimate goal is to establish a link between the elastic properties of the material and its microstructure. This work will build on a combined experimental and modeling approach, bringing together the expertise of the supervisory team for experiments on plutonium-bearing materials, and for numerical modeling (micromechanical modeling, FFT-based calculations).
At the end of this PhD, the graduate student, with initial training in the physical chemistry of materials, will master a wide range of experimental techniques as well as advanced numerical modeling methods applied to ceramic materials. These skills will open up many job opportunities in academic research or industrial R&D, both within and outside the nuclear sector.
Development of functionalized supports for the decontamination of complex surfaces contaminated by chemical agents
In the case of contamination by a toxic chemical agent, treatment begins with rapid emergency decontamination. Those working in the field must take into account the risk of contamination transfer, in particular by wearing suitable protective clothing. These clothing, as well as the small equipment used, must then be decontaminated before considering undressing to avoid self-contamination. The procedure includes a “dry” decontamination phase generally by applying powders (often clays) which are then wiped off using a glove or sponge. However, this device does not neutralize chemical contaminants and the powder re-aerosolizes easily, so its use is limited to unconfined and ventilated environments. The objective of this thesis is to develop an alternative technology for the decontamination of complex surfaces (clothing, small equipment). We propose to study the functionalization of different supports (such as gloves, wipes, microfibers, sponges, hydrogels, etc.) by adsorbent particles (zeolites, ceramic oxides, MOFs, etc.). A preliminary bibliographic study will allow us to select the most suitable adsorbents and supports for the capture of model chemical agents. The work will focus on the preparation of the supports, and different ways of incorporation of the particles in/on these supports will be compared. The materials will be characterized (incorporation rate, homogeneity, mechanical strength, non-reaerosolization, etc.), then their transfer, sorption and inactivation properties will be evaluated with model molecules.
This subject is aimed at dynamic chemists, motivated by the multidisciplinarity (chemistry of mineral and/or polymer materials, solid characterization and analytical chemistry), and having a particular interest in the development of experimental devices. The candidate will work within the Supercritical Processes and Decontamination Laboratory at the Marcoule site, and will benefit from the laboratory's expertise in decontamination and the development of adsorbent materials, as well as the support and expertise of the ICGM institut in Montpellier on functional polymers and hydrogels. The student will interact with the laboratory's technicians, engineers, doctoral students and post-doctoral fellows. The doctoral student will be involved in the different stages of the project, the reporting and publication of its results, and the presentation of its work in conferences. He/She will develop solid knowledge in the fields of nuclear and environmental science, as well as in project management.
Study of impurity transport in negative and positive triangularity plasmas
Nuclear fusion in a tokamak is a promising source of energy. However, a question arises: which plasma configuration is most likely to produce net energy? In order to contribute to answering this, during this PhD, we will study the impact of magnetic geometry (comparison between positive and negative triangularity) on the collisional and turbulent transport of tungsten (W). The performance of a tokamak strongly depends on the energy confinement it can achieve. The latter degrades significantly due to turbulent transport and radiation (primarily from W). On ITER, the tolerated amount of W in the core of the plasma is about 0.3 micrograms. Experiments have shown that the plasma geometry with negative triangularity (NT) is beneficial for confinement as it significantly reduces turbulent transport. With this geometry, it is possible to reach confinement levels similar to those of the ITER configuration (H-mode in positive triangularity), without the need for a minimum power threshold and without the associated plasma edge relaxations. However, questions remain: what level of W transport is found in NT compared to a positive geometry? What level of radiation can be predicted in future NT reactors? To contribute to answering these questions, during this PhD, we will evaluate the role of triangularity on impurity transport in different scenarios in WEST. The first phase of the work is experimental. Subsequently, the modeling of impurity transport will be carried out using collisional and turbulent models. Collaboration is planned with international plasma experts in NT configurations, with UCSD (United States) and EPFL (Switzerland).
Metallurgy under extreme conditions
The microstructure-properties relationship is a core concept of metallurgy, and of materials engineering in general. For instance, the hardness of quenched steels emerges from their martensitic microstructure, induced by a phase change in iron. Here we are concerned about metallurgy under extreme conditions in which metallic samples undergo pressurizations in the 100 GPa (=1 million atmospheres) range, making it possible to synthesise new crystalline phases with potentially interesting properties (hardness, magnetism, etc.).
Studied systems will include tin, then indium and cobalt. The three of them exhibit a rich polymorphism under high pressure and temperature. We will seek to elucidate the role of defects such as twinning and plasticity on the mechanism and kinetics of these transitions. This will be done by comparing experimental observations with microstructure predictions obtained through mesoscopic simulation. High pressure/ high temperature will be mainly generated by laser-heated diamond anvil cells, and characterisation tools will include in situ X-ray imaging by diffraction and tomography, as well as electron microscopy. The X-ray sources used will be synchrotron sources and the European free-electron X-ray laser.
Development of theoretical Raman spectra with application on minerals from the surface of Mars
As we push the boundaries of space exploration with new missions to nearby planets, improving our investigation tools is crucial. Mars rovers have revealed a surface mineralogy unlike anything on Earth, shaped by the planet’s former hydrosphere followed by an extended dry and cold environment. For example, this favors the formation of perchlorates, or mixed silicate–salts glassy phases — minerals that are difficult to synthesize and stabilize on Earth but remain surprisingly stable on Mars. Recent Raman spectrometry data confirms their presence, highlighting an opportunity for deeper research. Understanding these minerals could offer new insights into Martian chemistry and planetary evolution.
Here we want to calculate the theoretical Raman spectra of perchlorates and other Martian minerals using the density functional perturbation theory (DFPT) as implemented in the ABINIT package. We want to obtain not only the position and the intensity of the peaks, but also the peak widths. They are necessary to correctly identify between similar spectra and to assess, by integration, the actual intensity of the peaks, which are directly comparable to experimental values on the field. These allow us to choose the representative peaks that can be used in identification and to analyze the displacement patterns associated with the vibrations. The results of our simulations will be compared and interpreted in the light of measurements performed by the current rovers on the surface of Mars.
For this, we need to implement several third- and fourth-order derivatives of the energy. This will be done as a series of DFPT terms, where the perturbations can be atomic displacements or electric fields. We will use a combination of the 2n+1 theorem and finite differences. The implementation will be done within the "Projector Augmented-Wave" approach (PAW) to DFT. The entire development effort will be integrated into the ABINIT package and made available to the entire community. ABINIT (www.abinit.org) is a highly visible international collaborative project for ab initio simulations based on DFT and DFPT. The computed spectra will be made available to the community via the WURM database.
The successful candidate will be co-advised between the IPGP (Paris) and the CEA (Bruyères-le-Chatel, S of Paris) groups. IPGP is a world-renowned geosciences research institute founded in 1921, associated with the CNRS, a component of the Université Paris Cité and employing more than 500 people. The group of Razvan Caracas is highly active in computational mineralogy, study of matter at extreme conditions, and planetology. The Quantum simulation of Matter group at CEA Bruyères-le-Chatel led by Marc Torrent is a main developer of the ABINIT package, highly active in density functional theory, projector augmented-wave, and high-performance computing.